Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

21224

END SEMESTER/-RE EXAMINATION DECEMBER/ JANUARY 2024-25

Program: Third year B. Tech. Mechanical Sem I

Duration: 03 Hrs.

Maximum Points: 100

Course Code: PC-BTM512

Semester: V

- Course Name: Dynamics of Machinery
- Notes: 1. Attempt any 5 questions
 - 2. Each questions carry equal marks
 - 3. Assume suitable data wherever necessary and justify the same

Q.No.	Questions	Points	со	BL	Module No.
	a) Explain Belt transmission dynamometer.	05			
	b) What is the difference between absorption and	05	i I		
	transmission dynamometers?				
	c) A shaft fitted with a flywheel rotates at 250 r.p.m. and				
	drives a machine. The torque of machine varies in a			1	
	cyclic manner over a period of 3 revolutions. The	10			
	torque rises from 750 N-m to 3000 N-m uniformly		ŕ		
	during 1/2 revolution and remains constant for the				
	following revolution. It then falls uniformly to 750 N-m		}		
	during the next 1/2 revolution and remains constant for			}	
	one revolution, the cycle being repeated thereafter.				
	Determine the power required to drive the machine and				
	percentage fluctuation in speed, if the driving torque			ł	
1	applied to the shaft is constant and the mass of the				
	Tywheel is 500 kg with radius of gyration of 600 mm.		1	3	1
	a) Discuss the effect of the gyroscopic couple on a two	10			
	b) A four wheeled treller on of the table 2000 1				
	b) A four-wheeled fromey car of total mass 2000 kg				
	radius at 54 km/h. The treak is lifed at 89. The radius la				
	have an external diamater of 0.7 m and each min with				
	ave an external diameter of 0.7 m and each pair with				
	axie has a mass of 200 kg. The radius of gyration for				
	each pair is 0.5 m. The height of centre of gravity of the				
	for contributed force and surgescenic sounds actions, the				
2	pressure on each rail	10	1	12	2
	a) The following particulars refer to a Proell governor	10	1	1,4	2
	with open arms :	12			
	Length of all arms = 200 mm : distance of pivot of				
	arms from the axis of rotation = 40 mm : length of				
1	extension of lower arms to which each ball is				
3	attached = 100 mm ; mass of each ball = 6 kg and		1	3	3

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/ RE EXAMINATION DECEMBER/ JANUARY 2024-25

				• · · · · · · · · · · · · · · · · · · ·	<u>```</u>
5		10	3	2,3	5
	Fig (a)				
	any limitation on the value of k? Discuss. Compare the time period at vibration of this system with that one in figure b.				
	b) Find the time period of small oscillations of an inverted pendulum and spring system as shown in figure a given that the pendulum is vertical in the equilibrium position. Is there				O
	 i. Damped and Undamped Vibrations ii. Deterministics and Random Vibrations 	10			
4	a) Evoluin:	08	1	3	4
	special advantages of epicyclic gear trains?				
	b) Explain briefly the differences between simple.				
	speed of wheel B.				
	4. If the arm G makes 100 r.p.m. clockwise and wheel				
	fixed, find the speed of B; and				
	2. Find the number of teeth on A and B; 3. If the arm G makes 100 r nm clockwise and A is				
	1. Sketch the arrangement ;				
	and D. All the wheels have the same module and the number of teeth are $TC= 28$; $TD= 26$; $TE= TE= 18$				
	to the arm G. E gears with A and C and F gears with B	12			
	and compound wheels C and D rotate independently				
	a) In an epicyclic gear train, the internal wheels A and B				
	b) Derive the expression for effort and power of the	08			
	find the equilibrium speed for the above				
	inclined at an angle of 40° to the axis of rotation.				
	rotation of the balls is 190 mm when the round of	•	l I		

BharatiyaVidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumba - 400058

End Sem/ Be-Exam - DEC 2024/Jan 2025

41124

Duration: 3 Hrs

T. M. B. Tack (m) Lon I

Course Code: PC-BTM503

Program: Mechanical

Maximum Points: 100 Semester: V

Course Name: Mechatronics

Notes: Question No.1 is compulsory

Solve any Four questions out of SIX

Q.No.	Questions	Points	со	BL	PI
	 a) Discus various applications of Mechatronics b) Discuss the Index addressing mode with suitable example c) Explain different types of control valves d) Discuss the concept of Stability 				
1		20	1to4	I,III,V	1.5.1
					·
2a	Explain the different types of Pumps	10	2	I	1.6.1
2b	Draw and Explain the memory organization of 8051 and explain the control signals	10	2	VI	5.4.1
3a	Draw and explain i) Sequencing Circuit, and ii) Clamping circuit with accumulator	10	1	III	1.6.1
ЗЪ	Discuss the effect of change in G(s)H(s) on steady state error with different type of system.	10	2	v	541
	Develop a schematic and functional block diagram of Ship stabilization. In this system a roll sensor is used as a feedback element. The desired roll position is selected as Theta r, while actual roll position is theta c, which is compared with theta r to generate control signal. This activates the fin actuator in proper way to stabilize the ship.				
4a		10	3	VI	161

. المحمد المحمد المحمد التي المحمد ا المحمد المحمد

· · · ·

•

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Duration: 3 hrs.

Semester: V

Maximum Points: 100.

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

T. M. M. Tuch Program: B. Tech Mechanical Serve V

Course Code: PC-BTM515

Course Name: Computer Aided Machine Drawing

Important Notes:

- 1. Question 1 is compulsory.
- 2. Attempt any four out of remaining six questions.
- 3. Create a new folder and rename it to <Reg. No._CAMD_ENDSEM>
- Create separate .dwg file (AutoCAD) and PDF for each question and save in the above created folder only. File name should be < Reg. No._Question number_2D/3D>; eg <M240005_4A_2D> OR <M240005_4A_3D>
- 5. Answers to free hand sketches should be drawn on given A4 answer sheet and submit is back. Theoretical answer must be written on answer book provided.
- Students to carry only Admit Card, Pen, Pencil, eraser, and sharpener in Exam Hall.
 Use of scale and any geometric instrument is prohibited in Exam Hall.
- 7. At the end of exam, your folder with AutoCAD and pdf files will be uploaded by the authorized person. Before leaving the exam seat, student have to confirm that his/her folder is uploaded by the authorized person.
- 8. Assume suitable data wherever only if necessary.
- 9. Save your Work in AutoCAD Regularly.
- 10. If the File is not Found in the folder, student themself is responsible.

Page 1 of 8

Bharatiya Vidya Bhavan's. SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

~		Points	MO/	BL
Q.			со	
$\frac{N0}{0}$	(A) Explain Unilateral Tolerance and Bilateral Tolerance.	05	02/01	02
Q.1	B) Calculate the dimensions of the hole and shaft for a given clearance fit using a hole basis system. Basic size of the shaft: 50 mm, Minimum clearance: 0.100 mm, Tolerance of the hole: 0.045 mm. Tolerance of the shaft: 0.070mm. Determine: The dimensions of the hole and shaft. The maximum clearance possible.	05	02/01	01
	C) Explain the steps involved in exporting a CAD model for 3D printing. Highlight the importance of selecting the correct file format.	05	07/01	02
	 D) Draw Free Hand Sketches of the following: I. Round Key. 2. Rectangular Sunk Key. 	2.5 2.5	03/01	01
Q.2	 A) A cone of base diameter 70 mm and axis height 110 mm is resting on its base on the HP. It is completely penetrated by a cylinder of base diameter 50 mm. The axis of the solids intersects each other at right angles, 25 mm above the base of the cone. Complete the following tasks:- 1. Create a 3D modelling of the given intersection. 2. Project the 3D modelling on the layout sheet (F V, S V & T.V. and Isometric view) 3. Draw the 2D projection (F.V, S.V & T.V.) showing all 	05 02 08	01/ 03 01 03	03
	the necessary details. B) Draw Free Hand Sketches of the following: 1. Unified Thread. 2. Hexagonal Nut.	2.5 2.5	02/ 02	01

Page 2 of 8

Rhymrigh Videa Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN-2024-25

0.3	Given in the figure, is the Details of Standard Universal	-	04/	03
	Coupling. Complete the following tasks.			
	a) Draw the 2D drawing of different parts as shown in the	05	01	
	figure and plot them on pdf. b) Create the 3D Model of each part and show them	07	03	
	separately on one single pdf.			
	c) Create the assembly drawing of the universal coupling	08	04	
•	and show the (F.V, S.V & T.V. and Isometric view)			
	on one single PDF. Also, show the B.O.M Table.			
			03/	03
Q.4	Given in the figure, is the details of Sleeve and Cotter Joint.		03'	03
	Assume suitable material and d=30mm.			
1	Complete the following tasks:	05		
	a) Draw the 2D drawing of different parts as shown in the figure and plot them on pdf	05	01	
	h) Create the 3D Model of each part and show them	07	03	
	separately on one single pdf.			
	c) Assemble the parts at their functional positions and	08		
	show the (F.V, S.V & T.V. and Isometric view)		04	
	on one single PDF. Also, show the B.O.M Table.			
Q.5	Given in the figure, is the details of Socket and Spigot Cotter		06/	03
	Joint. Complete the following tasks:			
1	a) Draw the 2D drawing of different parts as shown in	05	01	
, I	the figure and plot them on pdf.		02	
	b) Create the 3D Model of each part and show them	07	03	
	separately on one single pdf.			
!	c) Assemble the parts at their functional positions and	08	04	
	show the (F.V, S.V & T.V. and Isometric view)	*		
	on one single PDF. Also, show the B.O.M Table.			
			 	L

Page 3 of 8

Rharativa Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

Q.6	 A) A square prism 30 mm base sides and 70mm axis is completely penetrated by another square prism of 25 mm sides and 70 mm axis, horizontally. Both axes Intersects & bisect each other. All faces of prisms are equally inclined to vertical Plane (VP). Draw the projections showing curves of intersections. Create 3D models of the prism-prism assembly and plot the projections of the prisms in (F.V, S.V & T.V. and Isometric view) on one single PDF. 	10	01/03	03
	 B) Explain the following terms in the context of limits, fits, and tolerances: Basic Size, Allowance, Tolerance with neat diagram. 	05	02/02	01
	 C) Draw Free Hand Sketches of the following: 1. Counter Sunk Headed Bolt. 2. Collar Neck Stud. 	2.5 2.5	02/ 02	01
Q.7	A) Given in the figure is the Details of V-Belt Pulley, Create a 3D model for a given parts.	10	05,07/03	03
	B) Given in the figure is the Drill Jig Assembly, Create a 3D model for a given parts.	10		1

Q3). Universal Coupling.

Q.5) Socket and Spigot Cotter Joint.

Page 6 of 8

Q.7.A.) V-Beit Pulley

Page 7 of 8

۰.

Bhamilya Viriya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

٩

END SEM/RE-EXAM EXAMINATION DEC/JAN-2024-25

Q.7.B.) Drill Jig Assembly

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

9/12/24

END SEMESTER/BE-EXAMINATION DEC-LAN 2024-25

	Duration: 3 Hour
Program: B. Lech. Mechanical Servy	Maximum Points: 100
Course Code: PCC-BTM 514	Nigarinium 1 Omesi 4 O
Course Name: Thermal and Fluid Machines	Semester: v

Notes:

- 1) Solve: Any FIVE Questions.
- 2) Answers must be SPECIFIC and in LEGIBLE handwriting.
- 3) Draw neat system diagram/s and process diagrams wherever necessary.
- 4) Use Steam tables and Mollier Chart provided by Examination section, if required.
- 5) Illustrate your answers with suitable examples as and where necessary.
- 6) Assume suitable data wherever necessary and state the same.

	Q. No.	Question	Points	CO CO	BL	Module
	1.	a) Explain how the centrifugal compressor and axial flow compressor work. Draw a neat sketch of each.	19	1, 2	• []	1
والمتعلمات والمالية ومردانا والمالية والمالية والمالية المالية المالية والمحتمية والمحتمية والمحتمية والمحتمية		b) A two-stage double-acting air compressor delivers air at a rate of 1.35 kg/sec. The suction pressure is 1 bar and interstate pressure is 7 bar and delivery pressure 42 bar. Air enters the low-pressure cylinder at 17°C and is cooled in the intercooler to 32°C. The clearances in L.P. and H.P. cylinders are 6% and 8% of respective strokes. The law of compression and re-expansion is $pv^{121} = C$ in both cylinders. The speed of the compressor is 500 RPM. Evaluate: (i) The amount of cooling water required per minute in the intercooler, if the rise in temperature of water is limited to 20°C, Take $c_{pw} = 4.18$ kJ/kg K (for water) and $c_{pa} = 1.005$ kJ/Kg K (for air). (ii) Power required in kW (iii) Diameter and Stroke of L.P. cylinder if L=D.	10	۲۰ [°] ۲۰	III, IV	77
	2.	(a) Draw neat sketch of Babcock and Wilcox boiler and explain its working in detail.	10	1, 	11, - 111	5
 		(b) Draw neat sketch of Economiser and Air-preheater and explain its working.	.10	1, 2	П, Ш	5
	З.	(a) Dry saturated steam at a pressure of 8 bars absolute enters a convergent divergent nozzle and leaves at 1.5 bar absolute. If the flow is isentropic and corresponding expansion index is 1.135, find the ratio of cross-sectional area at exit and throat for maximum discharge.	10	3,	III, IV	5
		(b) Draw neat sketch of Pelton turbine and explain its working in detail.	10	1, 2	I,II	7
	4.	(a) Draw neat sketch of schematic and T-s diagram for following method of improvement of efficiency of open cycle gas turbine and explain how efficiency increases.	10	1, 2	Ц, Ш	6

1

Bharaniya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

END SEMESTER/ SE-EXAMINATION DEC-123-2024-26-

	(i) Regeneration (ii) Reheating	I	1	1		
	(b) The pressure ratio of an open cycle constant pressure gos turbing					
Ì	plant is 5. The temperature range of the plant is 15% and 00000		ĺ			
	Using the following data:					
	$C_{pa} = 1 \text{ kJ/kg-K}$	-[Ì	
	$C_{pg} = 1.075 \text{ kJ/kg-K}$	į	1	1		
	and $\gamma = 1.4$ for air and gases		ļ		ĺ	ļ
	- 6.V. of fue = 43000 kJ/km					-
	$\eta_c = 0.90, \eta_t = 0.95, \eta_{com}$ (Combustion) = 0.95	10	3.	П.		
	Estimate:	10.	4	IV	6	
-	(a) The thermal efficiency of the plant			1		1
	(b) L.P. of the plant if the circulation of air is 5 knings		1			
]	(c) A:F ratio, and		i		1	
	(d) Specific fuel consumption				1	
	Neglect the losses in the system		Í			1
						ĺ
5	a) Explain: Phenomenon of combustion in SI Engines with		<u> </u>	1 11	· 	-
	various stages of combustion. Draw: Neat p-0 diagram	10	1,	I II.	3	
	b) Explain: Detonation in S.I. Engines, Discuss: i) Eactors			111	- <u> </u>	-
	affecting detonation in S.I. Engines and ii) Measures to control the	10	1,	II.	,	
	same. Draw: Neat sketches wherever necessary	10	2	Ш	10	1
6	a) Explain: Phenomenon of combustion in C.I. Engines with		1	11	<u> </u>	4
	various stages of the same. Draw: Neat p-0 diagram	10	5		4	
	b) State: Various fuel injection systems for C.I. Engines Describe:			<u></u>	<u> </u>	4
	Features and working of any one of them. Draw: Neat schematic	10	1	; 1. 11	4	Ì
	diagram.	10		11, III	2 4	
7.	a) Describe: Working and Construction of a single stage centrifugal	 		11	[-
	pump with its main parts. Draw: Neat sketch,	08	1	11,	2	
	+b) Define and Explain: Various efficiencies of a centrifugal pump.	=				
		00	1	1,11	2	
	cylinder = 20 mm and study = 100					1
	$f_{\text{trail}} = 30 \text{ mm}$ and $\text{stroke} = 100 \text{ mm}$, engine speed = 4000 rpm,			-	ļ	[
	value of value of value d2000 k M = 20 kg/hr, braking torque = 150m.N, calorific	06	4	V	.3	
	thermal officionau and it's to said	1				
	using enciency and in) bstc of the engine.	ţ				

2

Bharauya Vidya Bhayan's 🚏

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Munbai – 400058

End Semester Examination December 2024

Servi V

Program: T.Y. Mechanical Engineering

Course Code: MC-BT003

Duration: 3 Hour

Maximum Points: 100

Course Name: Health Safety and Environment

Semester: V

Notes: 1. Solve any FIVE main questions out of remaining six main questions.

- 2. Draw neat schematic diagrams wherever is necessary, highlight important points.
- 3. Assume suitable data if necessary and mention it.

Q .	Questions	Pt	CO	BL	Μ
No.					
Q1	Give definition of occupational health and safety? Explain its three	10	2	1,2	1
A	components?				
	Give any 5 principles of occupational health and safety?				
B	Draw neat sketch Top-Down approach applied to a system using failure mode	10	1		3
	and effect analysis (FMEA) technique?				
	With the help of the the instifution of 2 2 maints have output in the	10			
	with the help of sketch justify using 2-3 points, now entropy risk model helpful for OHS management?	10	1	2	2
A	Explain entropy risk model and residual risk model in details with the belo of				
	neat schematic sketch?]		
B	What is INS concept for fault tree construction?	10	2	1.3	4
	Basic Events G1, G2 & G3 (refers to failure of respective generator) will lead				
	to system top level event 'TE' (partial loss of power). Draw fault tree diagram				
	for above case, then convert it into an equivalent AND & OR gate. Also	1			
	calculate probability of occurrence of top level event if each basic event's				
	probability of occurrence is equal to 0.33.				
	Give methodology of PHL hazard analysis process?	10	1	2	3
	Using table give unreferice between PHA and PHL hazard analysis process?			 	ļ
В	List down benefits and commitment to be followed by the participating	10	3	1	5
	parties in KAWSAK convention for wetland conservation?				
Q4	List down Air quality concern in context of metro cities, critically polluted	10	4	1	7
A	areas and rural areas?				
B	A technician working at a height, and fitting a heavy hazardous chemical tank	10	1	3	2
	at that location, draw safety domain ontology for this case? Enlist hazardous		-		
05	Draw next schematic sketch which enlight alements as in general case?				
	safety engineers knowledge base as Primary elements, which are important for	10	2		1
	elements? Explain all primary element in details?				
B	Give classification of wetlands using codes?	10	2		
	Write short note on Convention on Biological Diversity (CBD)?	10	3	2	3
k		4]	1

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination December 2024

Q6 Give classification of waste according to different criteria's? 10 4 2 According to environmental protection act, list down all types of solid wastes? 10 4 1 B Write short note on following Dissolved oxygen and Biochemical oxygen demand? Explain their relations using systematic sketch? 10 4 1 Q7 Give definition of waste and disposal according to UN statistics division? List down all stages and explain how waste generates in each of these stages? 10 4 1 B Write a short note on cut set method? 10 2 3 Using MOCUS (minimal cut set todown) algorithm find minimal cut-set for the following system? (Stepwise answer expected) 10 2 3 Image: Displan their relation content set todown algorithm find minimal cut-set for the following system? (Stepwise answer expected) 10 2 3 Image: Displan their content set todown algorithm find minimal cut-set for the following system? (Stepwise answer expected) 10 2 3				••		
B Write short note on following Dissolved oxygen and Biochemical oxygen demand? Explain their relations using systematic sketch? 10 4 1 Q7 Give definition of waste and disposal according to UN statistics division? List down all stages and explain how waste generates in each of these stages? 10 4 1 B Write a short note on cut set method? 10 2 3 Using MOCUS (minimal cut set todown) algorithm find minimal cut-set for the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following of the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following of the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following of the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following of the following system? (Stepwise answer expected) 10 2 3 Image: Color of the following of the following of the following of the following system? 10 2 3 Image: Color	Q6 A	Give classification of waste according to different criteria's? According to environmental protection act, list down all types of solid wastes?	10	4	,2 	.6
Q7 Give definition of waste and disposal according to UN statistics division? List down all stages and explain how waste generates in each of these stages? 10 4 1 B Write a short note on cut set method? 10 2 3 Using MOCUS (minimal cut set todown) algorithm find minimal cut-set for the following system? (Stepwise answer expected) 10 2 3 Image: Comparison of Comparison of the following system? (Stepwise answer expected) Image: Comparison of Co	В	Write short note on following Dissolved oxygen and Biochemical oxygen demand? Explain their relations using systematic sketch?	10	4	1	7
B Write a short note on cut set method? Using MOCUS (minimal cut set todown) algorithm find minimal cut-set for the following system? (Stepwise answer expected) TOP A A C C C C C C C C C C C C C C C C C C	Q7 A	Give definition of waste and disposal according to UN statistics division? List down all stages and explain how waste generates in each of these stages?	10	4	1	6
TOP TOP A C C C C C C C C C C C C C	В	Write a short note on cut set method? Using MOCUS (minimal cut set todown) algorithm find minimal cut-set for	10	2	3	4
$ \begin{array}{c} TOP \\ \hline \hline \hline \hline \hline $	-1990-649 94	-the following system? (Stepwise answer expected)		4		
		TOP				
		Â				
				·		
			ł			
(2) (2) $(4)(2)$ (3)						
		a(2)(4)				
$\begin{array}{c} \hline 2 \\ \hline 2 \\ \hline \end{array} \\ \hline $ \\ \hline } \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\						
			ч.			
		$\left(2\right) \left(3\right)$				
						•

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Alded Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM/DEC2024/JAN2025

J. Y. B. Terk BTech Mechanical engg Sun J

13/12/20

Duration: 3 hr Maximum Points: 100 Semester: V

Course Code: PE-BTM511

Course Name: FEM for Mechanical Engineers.

Notes:

Program:

- 1. All questions are compulsory.
- 2. Answers to each sub-questions are grouped together
- 3. Use of scientific calculator is allowed
- 4. Begin answer to each question on new page.
- 5. Keep some margin on left side of answer paper

6. Candidates should write the answer legibly

Q.No	Question Description	Pts	СО	BL
1	a) Natural co-ordinate system ensures displacement compatibility	10	1,2	3,4
1	along the common edge in 2-D element, Explain.			
	b) List and elaborate the steps involved FE analysis.	10		
2	a) For the five-	10	2,3	2,3
ļ	spring assemblage $\angle \angle \angle \bigcirc$		1	
	shown in figure,			
1	i The assembled			
1	stiffness matrix. $-2.02.52$			i i
	ii. Nodal			
	displacement			
	(Assume the rigid vertical bars at nodes 2 and 3 connecting the			
	springs remain horizontal at all times but are free to slide or displace			
	left or right. There is an applied force at node 3 of 1000 N to the			
	right; and $(K_1 = K_4 = 750 \text{ N/m } K_5 = 400 \text{N/m } K_2 = K_3 = 500 \text{ N/m}$).	4		
	b) Explain Cholesky factorization method.	10		
3	a) Using two parameter trial solution obtain the solution for	10	3	2,3
	following equation:			
	$\frac{dy}{dx} + y = 0;$			
	$0 \le x \le 1, y(0) = 1$	· .		
	Use point collocation method (at $x = 1/4$ and $x = 3/4$: $R_d = 0$)			
1				

4a) Obtain the shape functions for triangular clement (fig.2)(5.6) 282,3b) For the three-noded triangular element shown in fig.2, calculate temperature at pointp1(7,4)P(5,4). Given the nodal temperatures $T_1 = 70^{\circ}$ C. $T_2 = (3.3)^{\circ}$ Fig.26100° C, $T_3 = 90^{\circ}$ C. Obtain 80° C isothermal line:66c) For the three-noded triangular clement shown in fig.2, calculate displacement at point P(5,5). Given $u_1=1, u_2=2, u_2=3, v_1=2, v_2=3, v_2=5.$ 102,35a) Find the Jacobian Matrix for the quadrilateral element shown in fig.(1,7) 4102,3b) Derive the shape function for quadratic bar element using Lagrangian method. (use Cartesian co- ordinate).102,36The pin-fin used for heat dissipation, has 80 mm long and circular c(3 area of 36m mn ² . At one end of fin temperature is 300°C. (take k = 100 watt/cm °C. h = 10 watt/cm °C. use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin.1,2,37FEM procedure: • Obtain clement level and assembled stiffncss matrix. • Calculate nodal displacement. • Stress in each element. Take P ₁ = 30 kN, P ₂ = 50 kN, E ₁ = 200 GPa, E ₂ = 100 GPa, L ₁ = 1.2 m, L ₂ = 0.8 m, d ₁ = 30 mm, d ₂ = 18 mm1,2,3		b) Derive the expression of weak formulation for both end fixed supported beam element with udl.	10		
b) For the three-noded triangular element shown in fig.2, calculate temperatures at point P(5,4). Given the nodal temperatures T ₁ = 70° C, T ₂ = $(3,3)^3$ Fig.2 100° C, T ₃ = 90° C. Obtain 80°C isothermal line: c) For the three-noded triangular element shown in fig.2, calculate displacement at point P(5,5). Given u=1, u=2, u=3; v=2, v=3, v=5. 5 a) Find the Jacobian Matrix (1,7) 4 for the quadrilateral element shown in fig. b) Derive the shape function for quadratic bar element using Lagrangian method. (use Cartesian co- ordinate). 6 The pin-fin used for heat dissipation, has 80 mm long and circular (2,1) 1 10 2,3 10 2,3	4	a) Obtain the shape functions for triangular element (fig.2)	8	2,3	2,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		b) For the three-noded triangular element shown in fig.2, calculate temperature at point	6		
isothermal line: c) For the three-noded triangular element shown in fig.2, calculate displacement at point P(5,5). Given $u_1=1, u_2=2, u_3=3; v_1=2, v_2=3, v_3=5.$ 5 a) Find the Jacobian Matrix (1,7) 4 for the quadrilateral element shown in fig. b) Derive the shape function for quadratic bar element using Lagrangian method. (use Cartesian co- ordinate). 6 The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36 π mm ² . At one end of fin temperature is 300°C. (take k = 100 watt/cm °C. $h = 10$ watt/cm ² °C, use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin. 7 a) For the stepped bar shown in figure. obtain the following using FEM procedure: • Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take P ₁ = 80 kN, P ₂ = 50 kN, E ₁ = 200 GPa, E ₂ = 100 GPa , L ₁ = 1.2 m, L ₂ = 0.8 m, d ₁ = 30 mm, d ₂ = 18 mm 1 2 (1) 2,3 (1) 2,3 (1) 2,3 (1) 2,3 (2) 10 (2) 2,1 1 (2) 10 (2) 2,1 1 (3) (6,6) (4) 2,3 (4) 2,3 (4) 2,3 (2) 10 (4) 2,3 (4) 2,3 (4) 2,3 (4) 2,3 (4) 2,3 (4) 2,3 (4) 2,3 (5) 2,1 1 (6) 10 (6) 10 (7) (1) 2,3 (6) 12,3 (7) (1) 2,3 (7) (1)		P(5,4). Given the nodal temperatures $T_1 = 70^0$ C, $T_2 = {3 \atop (3,3)^3}$ Fig.2 100^0 C, $T_3 = 90^0$ C. Obtain 80^0 C			
1 $u_1=1, u_2=2, u_3=3; v_1=2, v_2=3, v_3=5.$ 102,33Find the Jacobian Matrix for the quadrilateral element shown in fig. b) Derive the shape function for quadratic bar element using Lagrangian method. (use Cartesian co- ordinate).102,36The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36π mm². At one end of fin temperature is 300° C. (take k = 100 watt/cm °C. $h = 10$ watt/cm² °C, use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin.1,2,37a) For the stepped bar shown in figure. obtain the following using FEM procedure: • Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take P ₁ = 80 kN, P ₂ = 50 kN, E ₁ = 200 GPa, E ₂ = 100 GPa , L ₁ = 1.2 m, L ₂ = 0.8 m, d ₁ = 30 mm, d ₂ = 18 mm10		 isothermal line. c) For the three-noded triangular element shown in fig.2, calculate displacement at point P(5,5). Given 	6		
 element shown in fig. b) Derive the shape function for quadratic bar element using Lagrangian method. (use Cartesian coordinate). 6 The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36π mm². At one end of fin temperature is 300°C. (take k = 100 watt/cm °C. h = 10 watt/cm² °C, use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin. 7 a) For the stepped bar shown in figure. obtain the following using FEM procedure: Obtain element level and assembled stiffness matrix. Calculate nodal displacement. Stress in each element. Take P₁ = 80 kN, P₂ = 50 kN, E₁ = 200 GPa, E₂ = 100 GPa, L₁ = 1.2 m, L₂ = 0.8 m, d₁ = 30 mm, d₂ = 18 mm 	5	a) Find the Jacobian Matrix $(1,7)$ 4 for the quadrilateral $3(6,6)$	10	2,3	2,
(use Cartesian co- ordinate).(2,11 16The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36π mm². At one end of fin temperature is 300° C. (take k = 100 watt/cm °C. $h = 10$ watt/cm² °C, use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin.67a) For the stepped bar shown in figure. obtain the following using FEM procedure: • Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take P ₁ = 80 kN, P ₂ = 50 kN, E ₁ = 200 GPa, E ₂ = 100 GPa , L ₁ = 1.2 m, L ₂ = 0.8 m, d ₁ = 30 mm, d ₂ = 18 mm1		element shown in fig . b) Derive the shape function for quadratic bar element using Lagrangian method.	10		
6The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36π mm². At one end of fin temperature is 300° C. (take k = 100 watt/cm °C. $h = 10$ watt/cm² °C, use 2 linear elements, (consider convection from free end also)Find: a) Conductive and convective matrix for each element61,2,3a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin.647a) For the stepped bar shown in figure. obtain the following using FEM procedure: • Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take P1 = 80 kN, P2 = 50 kN, E1 = 200 GPa, E2 = 100 GPa , L1 = 1.2 m, L2 = 0.8 m, d1 = 30 mm, d2 = 18 mm1,2,3		(use Cartesian co- ordinate).			
(consider convection from free end also)Find:6a) Conductive and convective matrix for each element6b) Final assembled matrix4c) Thermal load vector4d) Temperature at the other end of pin.67a) For the stepped bar shown in figure. obtain the following using FEM procedure:1,2,3•Obtain element level and assembled stiffness matrix.8•Calculate nodal displacement.6•Stress in each element.6Take P1 = 80 kN, P2 = 50 kN, E1 = 200 GPa, E2 = 100 GPa , L1 = 1.2 m, L2 = 0.8 m, d1 = 30 mm, d2 = 18 mm6	6	The pin-fin used for heat dissipation, has 80 mm long and circular c/s area of 36π mm ² . At one end of fin temperature is 300° C. (take k = 100 watt/cm $^{\circ}$ C, $h = 10$ watt/cm ² $^{\circ}$ C, use 2 linear elements,		1,2,3	3
 a) Conductive and convective matrix for each element b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin. 7 a) For the stepped bar shown in figure. obtain the following using FEM procedure: Obtain element level and assembled stiffness matrix. Calculate nodal displacement. Stress in each element. Take P₁ = 80 kN, P₂ = 50 kN, E₁ = 200 GPa, E₂ = 100 GPa , L₁ = 1.2 m, L₂ = 0.8 m, d₁ = 30 mm, d₂ = 18 mm 		(consider convection from free end also)Find:			
b) Final assembled matrix c) Thermal load vector d) Temperature at the other end of pin. 7 a) For the stepped bar shown in figure. obtain the following using FEM procedure: • Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take $P_1 = 80$ kN, $P_2 = 50$ kN, $E_1 = 200$ GPa, $E_2 = 100$ GPa, $L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 30$ mm, $d_2 = 18$ mm 4	-	a) Conductive and convective matrix for each element	6	1	
c) Thermal load vector4d) Temperature at the other end of pin.67a) For the stepped bar shown in figure. obtain the following using FEM procedure:1,2.3• Obtain element level and assembled stiffness matrix.8• Calculate nodal displacement.6• Stress in each element.6• Take $P_1 = 80$ kN, $P_2 = 50$ kN, $E_1 = 200$ GPa, $E_2 = 100$ GPa , $L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 30$ mm, $d_2 = 18$ mm		b) Final assembled matrix	4		i I
d) Temperature at the other end of pin.67a) For the stepped bar shown in figure. obtain the following using FEM procedure:1,2,3• Obtain element level and assembled stiffness matrix.8• Calculate nodal displacement.6• Stress in each element.6• Take $P_1 = 80$ kN, $P_2 = 50$ kN, $E_1 = 200$ GPa, $E_2 = 100$ GPa , $L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 30$ mm, $d_2 = 18$ mm		c) Thermal load vector	4		
7a) For the stepped bar shown in figure. obtain the following using FEM procedure: Obtain element level and assembled stiffness matrix.88Calculate nodal displacement. Stress in each element. Take $P_1 = 80$ kN, $P_2 = 50$ kN, $E_1 = 200$ GPa, $E_2 = 100$ GPa , $L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 30$ mm, $d_2 = 18$ mm		d) Temperature at the other end of pin.	0	122	12
• Obtain element level and assembled stiffness matrix. • Calculate nodal displacement. • Stress in each element. Take $P_1 = 80$ kN, $P_2 = 50$ kN, $E_1 = 200$ GPa, $E_2 = 100$ GPa, $L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 30$ mm, $d_2 = 18$ mm	7	a) For the stepped bar shown in figure, obtain the following using FEM procedure:		1,2,5]
• Calculate nodal displacement. • Stress in each element. Take $P_1 = 80 \text{ kN}$, $P_2 = 50 \text{ kN}$, $E_1 = 200 \text{ GPa}$, $E_2 = 100 \text{ GPa}$, $L_1 = 1.2 \text{ m}$, $L_2 = 0.8 \text{ m}$, $d_1 = 30 \text{ mm}$, $d_2 = 18 \text{ mm}$		• Obtain element level and assembled suffness matrix.	8		
Take $P_1 = 80 \text{ kN}$, $P_2 = 50 \text{ kN}$, $E_1 = 200 \text{ GPa}$, $E_2 = 100 \text{ GPa}$, $L_1 = 1.2 \text{ m}$, $L_2 = 0.8 \text{ m}$, $d_1 = 30 \text{ mm}$, $d_2 = 18 \text{ mm}$		Calculate nodal displacement. Strong in each element	6		
$L_1 = 1.2$ m, $L_2 = 0.8$ m, $d_1 = 50$ mm, $d_2 = 10$ mm		• Stress in each element. Take $P_1 = 80 \text{ kN}$, $P_2 = 50 \text{ kN}$, $E_1 = 200 \text{ GPa}$, $E_2 = 100 \text{ GPa}$, $L_2 = 1.2 \text{ m}$, $L_2 = 0.8 \text{ m}$, $d_2 = 30 \text{ mm}$, $d_3 = 18 \text{ mm}$	6		
1		$L_1 = 1.2 \text{ m}, L_2 = 0.8 \text{ m}, d_1 = 50 \text{ mm}, d_2 = 10 \text{ mm}$			
		1 2 P2			

· ,

	Bharatiya Vidya Bhavan's				
S A I	PDAR PATEL COLLEGE OF ENG	IN]	EE	RIN	IG
onu	(An Autonomous Institution Affiliated to University of Mumbai)			
	END SEM / RE-EXAM EXAMINATION DEC 2024		,11	112	n
Tatel Da	Duration: 3 Hour		121	r -y	
	SEM Third Year Mech. Engg. SemV Subject: LGM, Court	se Coo	<u>de PE-</u>	BTM5	<u>34 _</u>
Ouel is	compulsory.	ani	AR	o la	2-
Solve ar	v 4 questions from remaining.	grou	per		• •
Figures	to the right indicate full marks.				-
Assume	any suitable data if necessary.		···	.	r
SN	Oue statement		el l	e	
:		ats	e l	qu	
		- io	Ē	Mo	8
Q1A	Explain the Concept of Lean. State objectives of Lean manufacturing.	10	4	1,2,	
	Explain the roadmap for lean implementation in Indian Automotive			3,3	
	industry and explain it. Draw the above roadmap.	10	5	17	
Q1B	Explore and explain critical success factors for Lean and Green	10	3	1, /	
	Manufacturing.	,	ļ		
O2A	What do you mean by VA, NVA. Draw the Value Stream Mapping of	10	4	2	
	the Process used in service industry of your own choice. Show the				
	process before and after improvement and calculate the cycle time			ł	
	before and after improvement.	10			-00
Q2B	What are 3 M's as per Lean Manufacturing? Identify the wastes in the	10	5	1	
	agriculture or healthcare sector. State the reasons of each waste.				
	Develop the strategies to eliminate the wastes.	10		12	C
Q3A	What are the housekeeping principles? What do you mean by 58?	10	5	1,3	
	What is the purpose of each S? Why is it necessary to implement SS in				
	organisation? Draw the necessary sketches in alignment with visual			Î	
	management in factory.	10	3	13	C
Q3B	State and explain the fisks in JIT Implementation. Frepare the Fishoone			5	C
	Diagram to snowcase Supply Risks in J11 implementation	10	4	75	$\frac{1}{C}$
Q4A	Explain why Green Supplier Development is necessary. Suggest the			1,5	
	Brocess Model for Green Supplier development. Prenare and explain				
-	the Green Supplier Development Model based on stage gate approach.				
04B	State the objectives Green Product Development. Explore and explain	10	5	6	C
Ч	Barriers for Green Product Development. Develop the strategies for				
	successful Green product development.				
05A	How to ensure the sustainable lean implementation. Explain the	10	5	1,5	C
×~	Significance of Employee training and employee involvement.				
O5B	What are the objectives of Green Procurement? Explore the challenges	10	5	7	C
<u> </u>	in Green Procurement. Explain the role industry 4.0 technologies to				l
	address them.	1			

.

~ -

Q6A	State the stakeholder of Manufacturing Industry. State the requirements	10	5	7,	CO4
	of stakeholders of industry. Explore the Critical Success Factors of			4	
	Stakeholder involvement in Greening drive of Organization.			6	
Q6B	Identify the lean and Green Metrics. Prepare and explain the	10	5	4	CO4
	Framework for Economic Assessment of Green initiatives.				
Q7A	Prepare the Framework to successfully implement the Green in service	10	5	4	CO4
) 	industry like bank.				
Q7B	What do you mean by error proofing. What are root causes of	10	4	3	CO3,
	generation of error. Explain with neat sketches 20 Pokayoke examples.				CO4

- >

n

٦,

İ

.

۰.

	BHARATIYA VIDYA BHAVAN'S SARDAR PATEL COLLEGE OF ENGINEERIN (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. END SEMESTER EXAM/RE-EVAM RECEMBED 2024/14/00058	G		
	Maximum Market 100	¥ 2025	-	
	$\frac{12}{12} \frac{12}{12} 12$	ation:	3 Hrs	
	Class: I.Y. B. Tech. (Mechanical) /JEUU Sem	ester: V		
	Name of the Care Wechanical Engineering)			
	Tvalle of the Course: Hydraulic Machinery Course Code	: PE-BI	`M552	
	Instructions:			
	1. Question number 1 is compulsory.			
	2. Solve any 4 questions from remaining questions (Question number 2 to '	7)		
	2. Draw neat diagrams wherever necessary.			
	5. Assume suitable data if necessary.	•		
- No.		Points	CO	M. No.
1 (a)) Test on single stage centrifugal nump at 1425 rpm gave the fallers	ļ	No.	
	$O(m^3/s)$ 0 0.006 0.012 0.010 0.024 0.001	15	2	7
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
ļ	A system is designed where the static head is 5 m and the operating point is			
	Hm=17.7 m and $O=0.018$ m ³ / ₂ c at a s			
	in 17.7 in and Q- 0.018 m/s for the above pump. The system is	Į		
	redesigned, the static head being 5.5 m and the frictional and other losses			
	increased by 20%. Find the new pump speed so that the flow rate of 0.018			
1	m^3/s can be maintained			
(b)	Match the fall of the test			
(0)	principle/characteristic feature)	5	1 to	2,3,4,5,6
	Centrifugal Pump		3	
	Gear Pump Axial flow reaction turbine			
	Pelton Turbine Medium specific speed reaction			
	Francis Turbine			
-	Kaplan Turbine Positive displacement Pump			
2 (a)	Explain with neat sketches (i) Governing of Impulse Turbing (i) A:			
	in Reciprocating Pumps	10	3	3
(b)	Write short note on (i) Draft tube in reaction turbines (ii) Selection of turbines	10	122	15
5	Find the height from the water surface at which a centrifugal pump may be installed	10	3	4, 5 7
(4)	Atmosphere pressure =1.01 har (abs): vanous procession = 0.000 t		-	.
	other losses in suction pipe 1.42 m. effective head of nump=40 m; and arrived	. [
	parameter=0.115.			
(b) —	In woton names its start that the		[1
	In water power site, the available discharge is 340 m ³ /s under a net head of 30 m.	10	234	1 to 4
	Assuming a turbine efficiency of 88% and rotational speed of 166.7 rpm, determine the least number of machines all of the least number of machines.	10	2,3,4	1 to 4

- -

٠

Page 1 of 3

 (i) Francis turbine with Ns not greater than 230. (ii) Kaplan turbine with Ns not greater than 685, What will be the output of each unit? Which of the two installations will be more 	
(ii) Kaplan turbine with Ns not greater than 685, What will be the output of each unit? Which of the two installations will be more	
What will be the output of each unit? Which of the two installations will be more	•
economical? (Reference Ns given is considering speed in rpm, power in KW, and	
head in meters).	
(a) Test on single stage centritugal pump at 1450 rpm gave the following results:- 10 1,2	7
$Q(m^3/s) = 0$ 0.006 0.012 0.018 0.024 0.030 0.036	
Hm (m) 22.6 21.9 20.3 17.7 14.2 9.7 3.9	
When two such identical pumps are connected in parallel, the flow rate through the	
system is the same as when they are connected in series. Determine the flow rate that	
the individual pump would deliver if connected to the same system. Assume that the	
system characteristic is purely resistive with no static lift.	
A single-acting reciprocating pump has a stroke length of 160 mm, suction pipe is 7	+
m long and the ratio of suction pipe diameter to the piston diameter is 0.75. The	
water level in the sump is 3 m below the axis of the pump cylinder and the pipe 10 3,4	4
connecting the sump and pump cylinder is 75 mm in diameter. If the crank is running	
at 75 rpm, determine the pressure head on the piston at the beginning, middle and	
end of the suction stroke. Take friction factor, $f=0.04$ (Take $h_f=flv^2/2gd$).	
a) In a hydro-electric scheme a number of Pelton wheels are to be used under	
following conditions: Total output required 37 MW, gross head 245 m, speed	
6.25 rps; 2 jets per wheel, Cv of nozzles 0.97; Speed ratio is 0.46, maximum	-
overall efficiency (based on conditions immediately before the nozzles)	
81.5%. "Dimensionless specific speed" not to exceed 0.022 rev (for one jet);	
head lost to friction in pipe line not to exceed 12 m. Calculate	
(i) The number of wheels required.	
(ii) The diameters of jet and wheels	ſ
(iii) The hydraulic efficiency, if the blades deflects the water through 10 1 to	5
165 ⁰ and reduce its relative velocity by 15%	
(iv) The percentage of input power that remains as kinetic energy of	1
the water at discharge.	
IT D	
Take the relation for dimensionless specific speed = $\rho^{1/2}(gH)^{3/4}$	
where N is the speed in rns. P is the power in watts H is the head in meters	
and α is the density of the water in ka/m ³	
h) Calculate the diameter and sneed of the runner of a Kanlan turking davalaning 6000	
KW under an effective head of 5 m. Overall efficiency of the turbine is 0.0%. The	1
diameter of the hoss is 0.4 times the external diameter of the runner. The turbine 10 3	3
speed ratio is 2 and flow ratio is 0.6. What is the specific speed of the turbine?	
a) A three-stage centrifugal pump has impeller 400 mm in diameter and 20 mm wide. 10 2.4	7
The vane angle at outlet is 45° and the area occupied by the vane thickness may be	
assumed 8% of the total area. If the pump delivers 3.6 m ³ /min of water when running	
at 920 rpm, determine (i) Power of the pump (ii) Manometric head and (iii) specific	
speed. Assume mechanical efficiency as 88% and manometric efficiency as 77%.	
b) A hydraulic turbine is to develop 1015 KW when running at 120 rpm under a net 10 3,4	. 4
head of 12 m. Work out the maximum flow rate and specific speed for the turbine if	
the overall efficiency at the best operating point is 92%. In order to predict its	
performance, a 1:10 scale model is tested under a head of 7.2 m. What would be the	
speed, power output and water consumption of the model if it runs under the	
conditions similar to the prototype?	
a) Test on single stage centrifugal pump at constant speed gave the following results:- 10 3,4	7.
	1

Page 2 of 3

3

,

ł

•												
	<u>.</u>								T		T	
•	H(m)	22.6	21.3	19.4	16.2	11.6	6.5	0.6				
~ f	n (%)	0	74	86	85	70	46	8			ļ	
	The pump i	s used to	lift wate	r over a v	ertical dist	ance of 6	.5 m by 1	neans of IC) cm		j	
	diameter pit	be, 65 m	long, for	which the	friction fa	ctor is 0.0	2.			1	ł	
	(i)	Determi	ne the rate	e of flow a	nd power	supplied t	o the pun	ıp C				
l	(ii)	If it is a	required '	to increase	e the rate	of flow	by additi	on of a set	cona dia		1	
		identical	l pump ((running a	t the san	ne speed)	which i	S Connecte	u ni htha			
	1	parallel	with the c	original pu	mp. Deter	mine the r	ate of no	W Ironi Don	u uic			
1		pumps a	ind the po	wer suppli	ed to both	the pump	S.		n hv	10	3	5.6
(b)	Manometr	ic head	discharge	e characte	eristics of	a centri	ugai pu	mp is give	n oy	10	Ť	- ,-
	the equation	on:										
	Hm=20+1	5Q-600(Q^2	•					•			
	Where Hn	n is in m	n and Q i	s in m³/s.	System	curve for	a typica	il installatio	on is			
	estimated	as 10+90	$00Q^2 (Q)$	is in m³/s), where i	10 is stati	c head in	n m .				
	If the NPS	HR cha	racteristi	cs of the j	oump is g	iven by e	quation:					
	NPSHR=2	200+600	O^2									
	where O i	s in m3/s	s. evalua	te how hi	gh the pu	mp can b	e safely	installed a	bove			
	the sumn	if suctio	n pipe di	iameter is	15 cm, p	oipe lengt	h on suc	tion side i	s 1.5			
	times stati	ic suctio	n lift an	d 'f' for	the pipe	is 0.016.	Evaluat	e the cavit	ation			
	nonomatar	's' if n	umn till	s at 1440	rom and	operates	at duty	point. Calc	ulate		1	
	the specif	ic speed	Take at	tmospheri	c and var	our pres	sure bei	ng 10.3 an	d 2.5			
–	the specific the specific the specific terms of ter	ie specu	. June a	uno priori		E 7		·		_	l	<u> </u>
L	mwc resp	convery	•									

•

٠

•

	Dharatiya Vidya Dbayan'a SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute) Munshi Nagar, Andheri (W), Mumbai - 400058	A A A A A A A A A A A A A A A A A A A		
E	END SEMESTER/RE-EXAMINATION, DEC/JAN 2024-25 B.Tech. (Mechanical Engineering) Duration: Thr Duration: Thr	3/12/ ee Hour	'24	
((Code: PE BIM 554 Maximum Pe	ester: V		
		00001. 1		
	 Answer any FIVE from seven questions, Answers to all sub questions should be grouped together for evaluation, Make suitable assumption if needed with proper reasoning, Data shown under column CO and BL are only for the purpose of academic evaluation. 			
		Points	СО	BL
1	(A) Define Mach number and Mach angle.	[10]	ì	1
	Derive an expression that represents sonic velocity in an arbitrary gaseous medium at a given temperature.			
	 (B) Differentiate between following. i) Compressible and Incompressible, ii) Subsonic and Supersonic, iii) Critical state and actual state of fluid flow. iv) Normal and Oblique shock wave 	[10]	1,2	3
2.	(A) What do you understand by stagnation state of a flowing stream? Derive expression for stagnation properties- Pressure, Temperature and Density, in terms of stream Mach Number (M)	[10]	1	1,2
	(B) Air flows isentropically through the duct from 350 kPa (abs), 60° C, and 183 m/s at the inlet state to M=5 at the outlet, where local isentropic stagnation conditions are known to be 385 kPa (abs) and 350 K . Compute the local isentropic stagnation pressure and temperature at the inlet and the static pressure, temperature and density at the duct outlet. Locate the static state points of the inlet and outlet on a T-s diagram, and indicate the stagnation point also.	[10]	3,4	3
3.	(A) What are the basic governing equations for a compressible fluid flow analysis? Explain and write them in their mathematical form.	[10]	2,3	4
	(B) For flow through a variable area duct prove that	[10]	2,3	4,5
	$\frac{dV}{V} = -\frac{dA}{A} \frac{1}{\left[1 - M^2\right]}$, Explain this expression with its physical meaning;			
4.	(A) What is choked flow, and under what conditions does it occur? How does varying back pressure affect flow in a convergent-divergent (CD) nozzle? Illustrate the pressure ratio variation along the nozzle length and the mass flow rate as a function of the pressure ratio	[10]	1,3	1,2
	(B) Air flows isentropically in a channel. At section 1 (Fig. 1), the Mach number is 0.3, the area is $0.001m^2$, and the absolute pressure and the temperature are 650 kPa and 62°C, respectively. At section 2, the Mach number is 0.8. Sketch the channel shape, plot a Ts	[10]	3	4,5

• • •

2

diagram for the process, and evaluate properties in section 2.

If the Mach number at the inlet is 2, will the Mach number at the outlet increase or decrease? Analyze the flow conditions and provide a conclusion with justification.

5. (A) Consider a normal shock that exists in a one-dimensional gas flow. M_1 and M_2 are $[10] = 3.4 \pm 1.2$ upstream and downstream Mach numbers of the flow across the normal shock. Derive the

following expression, $M_2 = \frac{M_1^2 + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_1^2 - 1}$

(B) A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. [10] 4 3,4 Properties upstream from the shock are $T_1 = 5^{\circ}C$, $p_1 = 65.0$ kPa (abs.). and V = 668 m/s. Determine properties downstream and s_2 - s_1 . Sketch the process on a Ts diagram.

(Use Gas Table)

6. (A) What is Fanno flow? Sketch the Fanno line on an appropriate property diagram and [10] 1,2 1,2 explain it. Discuss the effect of Fanno flow on the following properties: Pressure, temperature, density, enthalpy and velocity of flow.
(B) A long pipe of 25.4 mm diameter has a mean coefficient of friction of 0.003. Air enters [10] 3.4 3

(B) A long pipe of 25.4 mm diameter has a mean coefficient of friction of 0.003. Air enters [10] the pipe at a Mach number of 2.5. stagnation temperature of 310K and static pressure of 0.507 bar. Determine for a section at which the Mach number reaches 1.2, (a) static pressure and temperature, (b) stagnation pressure and temperature, (c) velocity of air, (d) distance of section from the inlet, and (e) mass flow rate of the air. (Use Gas Table)

7. (A) Discuss Rayleigh Flow. List down all governing equations required to characterise this [10] 1.3 3.4 flow. Represent it on a Ts diagram and explain its unique features.

4.5

23

(B) What is a supersonic wind tunnel, and how does it differ from a subsonic wind tunnel? [10]
 Explain the different flow development zones in a supersonic wind tunnel and describe the features that occur in each zone during operation.

Fig. 1

*_*_*_*

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re=Emam - December 2024 Examinations

Blong

Program: T Y. B. Tech Mechanical Engineering Lew

Course Code: PC-BTM501

Course Name: Heat and Mass Transfer

Maximum Points:100

Duration: 3 hours

Semester: V

Important Instructions:

- 1. Solve any five questions.
- 2. Use of Reference Data for Properties of fluids, Convective heat transfer correlations Heisler Charts and heat exchanger data charts duly approved by examiner is permitted.
- 3. Assume suitable data and state the same if required.
- 4. Draw neat sketches wherever necessary.
- 5. Answers to theory questions should be specific and in legible handwriting.

Q.No.	Questions	Points	со	BL	Module No.
1(a)	 The insulation boards for air-conditioning purposes are made of three layers, middle being of packed grass 10 cm thick (k = 0.02 W/m°C) and the sides are made of plywood each of 2 cm thickness (k = 0.12 W/m°C). They are glued with each other. Evaluate: (i) The heat flow per m² area if one surface is at 35°C and other surface is at 20°C. Neglect the resistance of glue. (ii) Instead of glue, if these three pieces are bolted by four steel bolts of 1 cm diameter at the corner (k = 40 W/m°C) per m² area of the board then 	10	1,2	3,4	2
	find the heat flow per m ² area of the combined board.		-		
l(b)	Define the thermal conductivity of a material. Also, discuss the factors it depends on with some examples of materials.	.05	1	1	1
I(c)	A surface of area $3m^2$ and at 200°C exchanges heat with another surface at 30°C by radiation. If value of factor due to the geometric location and emissivity is 0.60, determine :	05	1	1	1

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

۰.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-Eastm - December 2024 Examinations

	 (i) The rate of heat transfer (ii) The value of thermal resistance, and (iii) The equivalent convection coefficient. 				
2(a)	Calculate the rate of heat flow per m ² through a furnace wall containing of 200 mm thick inner layer of chrome brick, a center layer of kaolin brick 100 mm thick and an outer layer of masonry brick 100 mm thick. The unit surface conductance at the inner surface is 74 W/m ² °C and the outer surface temperature is 70°C. The temperature of the gases inside the furnace is 1670°C. What temperatures prevail at the inner and outer surfaces of the center layer?	10	4	3,4	. 2
	Take thermal conductivity of chrome brick, karolin brick and masonary brick as 1.25 W/m°C, 0.074 W/m°C and 0.555 W/m°C respectively.				
2(b)	Hot air at a temperature of 65°C if flowing through a steel pipe of 120 mm diameter. The pipe is covered with two layers of different insulating materials of thickness 60 mm and 40 mm, and their corresponding thermal conductivities are 0.24 and 0.4 W/m°C. The inside and outside heat transfer coefficients are 60 W/m ² °C and 12 W/m ² °C respectively. The atmosphere is at 20°C. Find the rate of heat loss from 60 m length of pipe.	10	4	. 3,4	2
3(a)	A 60 mm thick large steel plate (k = 42.6 W/m °C, α = 0.043 m ² /h), initially at 440°C is suddenly exposed on both sides to an environment with convective heat transfer coefficient 235 W/m ² °C and temperature 50°C. Determine the center line temperature, and temperature inside the plate 15 mm from the midplane after 4.3 minutes.	10	1,2	3,4	3
3(b)	Derive an expression for LMTD of parallel flow heat exchanger.	10	2	2,3	6
4(a)	In a certain double pipe heat exchanger hot water flows at a rate of 5000 kg/h and gets cooled from 95°C to 65°C. At the same time 50000 kg/h of cooling water at 30°C enters the heat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at 2270 $W/m^2/K$. Determine the heat transfer area required and the effectiveness remains constant at 2270 $W/m^2 K$. Determine the heat transfer area required and the	10	4	3,4	6

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

 \checkmark

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-Enam - December 2024 Examinations

			-	
effectiveness, assuming two streams are in parallel flow. Assume for both the streams $c_p = 4.2 \text{ kJ/kg K}$.				
 Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg/s. The inlet and outlet temperatures of water are15°C and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is 230 W/m^{2°}C. Estimate the followings using NTU method. Take the latent heat of vaporization at 100°C = 2257 kJ/kg. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation. 	10	4	3,4	6
Define following terms and also write their significance.	10	1	1,2	4
 (i) Reynolds number (ii) Prandtl number (iii) Nusselt number (iv) Stanton number (v) Grashoff number 		-		
Air at 1 bar pressure and 20°C is flowing over a flat plate	10	4	3,4	4
at a velocity of 3 m/s. if the plate is 280 mm wide and at 60% Calculate the following:				
DU-C, Calculate the following.			· ·	
 (i) Bulk Mean Temperature (Tf), (ii) Boundary layer thickness (δ) (iii) Thickness of thermal boundary layer (δth) (iv) Local convective heat transfer coefficient at x = 200 mm, (h_x) (v) Rate of Convective heat transfer by plate, Q_{conv} 				
Select appropriate correlation:				
$\frac{Nu_{x}=0.332}{Nu} \frac{(Re)^{1/2}}{(Re)^{1/2}} \times \frac{(Pr)^{1/3}}{(Pr)^{1/3}} \text{ for laminar flow}$				
Nu _x =0.036 [(Re _x) ^{0.8} - 850] * (Pr) ^{1/3} - Turbulent Flow	10	3	12	5
State: The following laws of radiation and Express: Mathematical equation/s for each of them. i) Stefan- Boltzmann Law ii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law	10		1,2	
	effectiveness, assuming two streams are in parallel flow. Assume for both the streams $c_p = 4.2 \text{ kJ/kg K}$. Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg/s. The inlet and outlet temperatures of water are15°C and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is 230 W/m ^{2o} C. Estimate the followings using NTU method. Take the latent heat of vaporization at 100°C = 2257 kJ/kg. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation. Define following terms and also write their significance. (i) Reynolds number (ii) Prandtl number (iv) Stanton number (iv) Stanton number (v) Grashoff number (i) Bulk Mean Temperature (Tr), (ii) Boundary layer thickness (ð) (iii) Thickness of thermal boundary layer (δ_{th}) (iv) Local convective heat transfer coefficient at x = 200 mm, (h _x) (v) Rate of Convective heat transfer splate, Q _{conv} Select appropriate correlation: Nu _x =0.332 (Re) ^{1/2} × (Pr) ^{1/3} for laminar flow Nu _x =0.036 [(Re _x) ^{0.8} – 850] * (Pr) ^{1/3} – Turbulent Flow State: The following laws of radiation and Express: Mathematical equation/s for each of them. i) Stefan- Boltzmann Law ii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law	effectiveness, assuming two streams are in parallel flow. Assume for both the streams $c_p = 4.2 \text{ kJ/kg K}$.Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg/s. The inlet and outlet temperatures of water are15°C and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is 230 W/m ²⁰ C. Estimate the followings using NTU method. Take the latent heat of vaporization at 100°C = 2257 kJ/kg. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation.10Define following terms and also write their significance. (ii) Reynolds number (iii) Nusselt number (iv) Stanton number (v) Grashoff number10Air at 1 bar pressure and 20°C is flowing over a flat plate at a velocity of 3 m/s. if the plate is 280 mm wide and at 60°C, Calculate the following: (ii) Boundary layer thickness (δ) (iii) Thickness of thermal boundary layer (δ_{th}) (iv) Local convective heat transfer coefficient at x = 200 mm, (h _x) (v) Rate of Convective heat transfer by plate, Qconv Select appropriate correlation: Nu _k =0.332 (Re) ^{1/2} × (Pr) ^{1/3} for laminar flow Nu _x =0.036 [(Rex) ^{0.8} - 850] * (Pr) ^{1/3} - Turbulent Flow10State: The following laws of radiation and Express: Mathematical equation/s for each of them. ii) Stefan- Boltzmann Law iii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law10	effectiveness, assuming two streams are in parallel flow. Assume for both the streams $c_p = 4.2 \text{ kJ/kg K}$.10Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg/s. The inlet and outlet temperatures of water are15°C and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is 230 W/m ² °C. Estimate the followings using NTU method. Take the latent heat of vaporization at 100°C = 2257 kJ/kg. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation.101Define following terms and also write their significance. (ii) Prandtl number (iii) Nusselt number (iv) Stanton number (v) Grashoff number104Air at 1 bar pressure and 20°C is flowing over a flat plate at a velocity of 3 m/s. if the plate is 280 mm wide and at 60°C, Calculate the following: (i) Bulk Mean Temperature (Tr), (ii) Boundary layer thickness (ð) (iii) Thickness of thermal boundary layer (\deltath) 	effectiveness, assuming two streams are in parallel flow. Assume for both the streams $c_p = 4.2 \text{ kJ/kg K}$.1043,4Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg/s. The inlet and outlet temperatures of water are15°C and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is 230 W/m ² °C. Estimate the followings using NTU method. Take the latent heat of vaporization at 100°C = 2257 kJ/kg. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation.1011,2Define following terms and also write their significance. (ii) Prandtl number (iv) Stanton number (v) Grashoff number1043,4Air at 1 bar pressure and 20°C is flowing over a flat plate at a velocity of 3 m/s. if the plate is 280 mm wide and at 60°C, Calculate the following: (i) Bulk Mean Temperature (Tr), (ii) Boundary layer thickness (\delta) (iii) Thickness of thermal boundary layer (δ_{h}) (iv) Local convective heat transfer coefficient at x = 200 mm, (h_x) (v) Rate of Convective heat transfer by plate, Qconv Select appropriate correlation: Nu _x =0.036 [(Re.y) ^{0.8} - 850] * (Pr) ^{1/3} for laminar flow Nu _x =0.036 [(Re.y) ^{0.8} - 850] * (Pr) ^{1/3} - Turbulent Flow31,2State: The following laws of radiation and Express: Mathematical equation/s for each of therm. i) Stefan- Boltzmann Law ii) Vamber's Cosine Law31,2

Bharetiya Vidya Bhavon's ·· · - . SARDAR PATEL COLLEGE OF ENGINEERING

- ~ £ .

End Semester/Re-Exam - December 2024 Examinations

-

6(6)	For an ine emitting ra	dustrial furnace in the form of a black body diations at 3000°C, Evaluate:	10	3	3,4	5
	i) Me ii) Wi iii) Ma iii) Ma	onochromatic emissive power at 1.2 μm length. avelength at which emission is maximum aximum emissive power				
	v) To ass 0.9	tal emissive power of the furnace if it is umed as a real surface with emissivity equal to				
7	Explain the	e followings:				
	(i)	State the examples of mass transfer in day-to- day life and industrial applications. What are	05	4	1,2	7.
	(ii)	the various mechanisms of mass transfer? State Fick's law of diffusion. Define the various symbols used and give their units.	05	4	1,2	· · · · · · · · · · · · · · · · · · ·
	(iii) l	Define the terms absorptivity, reflectivity and ransmissivity of radiation with neat sketch.	05	3	- 1,2	5
, ,	(iv) v	What is 'black body'? How does it differ from a grey body?	05	3	1,2	5
					•	

(PTO)

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Reseam - December 2024 Examinations

The properties of air are given below.

~

1997 - 1997 1	Table	A4.2 Prop	erties of dry w	r at atmosphe	ric pressure	
eer N-selfense anders Alger (*** F	р kg/m ³	C _p kJ/kg-K	$\mu \times 10^{6}$ N-s/m ²	k Wm-K	Pi	$v \times 10^6$ m ² /s
<u>(</u>)	1.293	1.005	17.2	0.0244	0.707	1328***
10	1,247	1.005	17.7	00251	0.705	14.16
20	1.205	1.005	18.1	0.0259	0.703	15.06
30	1.165	4.005	18.6	0.0267	0.701	16.00
(11)	1.128	1,005	19,1	0.0276	0.699	16.96
50	3.093	1,005	19.6	0.0283	0.698	17.95
60	1.060	1,005	20.1	0.0290	0.696	18.97
70	1.029	1.009	20.6	0.0297	0.694	20.02
84	1 (100)	1.009	21.1	0.0305	0.692	21.09
90	0.972	1.009	21.5	0.0313	0,690	22.40
100	0.946	1.009	21.9	0.0321	0.688	23.13
120	0.898	1.049	22.9	0.0334	0.686	25.45
140	0.854	1.013	23.7	0.0349	0.684	27,80 -
160	0.815	4.017	24,5	0.0364	0.682	30.09
180	():779	1.022	25.3	0.0378	0.681	32.49
200	0.746	1.026	26.0	0,0393	0.680	34.85
250	0.674	1.038	27,4	0.0427	0.677	40.61
300	0.645	1.047	29.7	0.0461	0.674	48.33
350	0.566	1.059	31.4	0.0491	0.676	55,46
400	0.524	1.068	33.0	0.0521	0.678	63.09
500	0.456	1.093	36.2	0.0575	0.687	79,38 *
600	0,404	1.114	39.1	0.0622	0.699	96.89
700	0.362	1.135	41.8	0.0671	0.706	<u>115.4</u>
800	0.329	1.156	44.3	0.0718	0.713	134.8
· 000	0.301	1.172	46.7	0.0763	0.717	⊂ 155:I™
1000	0/27/7	1,185	49.0	0.0807	0.719	177.1