

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEM/BE-ENAM EXAMINATION DEC/JAN 2024-25

Program: M. Tech. Construction Management Kmg Duration: 3 hr

Course code: PC-MTCM-101

Maximum Points: 100

Name of the Course: Construction Organization and Safety Management

Semester: I

Instructions:

- 1. Question no 1 is compulsory.
- 2. Attempt any 4 questions out of remaining 6 questions.
- 3. Neat diagrams must be drawn wherever necessary.
- 4. Figures to the right side indicate full points.
- 5. Assume Suitable data if necessary and state it clearly

Q. No.	Questions	Points	со	BL	Module
1a	Discuss the process of planning in the context of flyover construction project.	05	CO1	BL3	2
lb	Draw site organisation structure for the same.	04	C01	BL2	2
1c	List the safety gears required on the site for flyover construction project.	03	CO2	BL2	5 &6
1d	Identify the hazards involved in the flyover construction project.	04	C02	BL3	5
1e	Discuss the mitigation measures for the hazard identified.	04	CO2	BL3	5 & 6
2a	Discuss contributions of Fredrick Taylor and Henry Fayol in management thought development with more emphasis on the improvement of construction productivity.	10	C01	B L1	1
2b	Discuss the manpower planning in the context of construction project. Discuss the techniques and methods used for selection of manpower.	10	CO1	BL2	2
3a	Explain and discuss components of work study along with steps in work study. Discuss how it is useful for productivity improvement.	10	CO2	BL2	3
3b	 Explain the job hazard analysis in the context of a) Excavation b) Layout c) RCC work 	10	CO3	BL3	
4a	Discuss the different recording techniques in the context of method study	08	CO3	BL2	3
4b	Explain: McGregor's Theory 'X' and Theory 'Y' about the nature of people.	06	CO1	BL1	1
4c	State the duties and responsibilities of Safety officer.	06	CO3	BL2	4

Page 1 of 2

— ——					8
5a	You have visited design and construction of 8.65 km long treated water tunnel project executed by AFCONS in the context of the same discuss the visitor's safety induction process.	08	CO3	BL2	5
5b	Explain in detail time and motion study in the brick masonry work. Draw process flow chart. Brief about how it is beneficial for productivity improvement.	08	CO2	BL2	3
<u>5c</u>	Differentiate production and productivity.	04	CO1	BL1	2&3
6a	Define site safety lapses and discuss the various solutions to overcome them.	07	CO2	BL2	5
6b	Discuss Role of Abraham Maslow in the context of the management.	05	CO1	BL1	1
6c	It is proposed to carryout underground drainage line in MCGM area, discuss the site specific safety plan.	08	CO3	BL1	5
7a	Discuss the occupational health safety & environmental policy of AFCONS in the context of design and construction of 8.65 km long treated water tunnel project.	08	CO3	BL2	7
7b	Discuss the typical contents of project health and safety plan.	08	CO3	BL2	5
7c	Difference between Training & Education in the context of manpower development.	04	CO1	BLI	2

\$

:

.

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

SET-I END SEM/RE-EXAM Examinations, January 2025

Total points:100

. ځ

ł

m. Tech Qui with const. mg Duration: Total Time allotted will be 3Hr.

6/1/25

Class: M.TECH(CM) Semester: 1

Program: Civil

Name of the Course-Applied Statistics and Quantitative Techniques Course Code : PC- MTCM102

Instructions:

Assume suitable data if necessary and state the clearly. 1.

Question No				Points	CO	BL	Module No
Î A	Survey and Survey nagar. Each plants The number of cor	the stwo RMC plants, of produces three products, Nucrete per day(in cubic met	one located at Solan other at Mohan M50, M60, M70 named as A, B, C. er) as follows	10	1,2	3	7
	 	Plant at			ļ	ł	
	 	Solan	Mohan nagar	1		1 1	
		(S)	(M)				
	M50(A)	1500	1500				
	M60(B)	3000	1000				
	M70(C)		1				
	how many days ea still meeting marke						
1B	Solve By Big M M	ethod		10	1,3	3	7
	Maximize $Z = x_1 + $	2x2+3x3-x4					
	Subject to,						
	x1+2x2+3x 2x1 + x2+ 4 X1+ 2x2+x X1, x2, x3,x	$x_3 = 15$ $5x_3 = 20$ $3+x_4 = 10$ $x_4 \ge 0.$					
Q 2A	The average number months at a particu	er of collisions occurring ir lar intersection is 4.	a two weeks during the summer	10	1,2	2	1

													·	
	 a) What is b) What is c) What is d) What is e) What is f) What is interval? 	 a) What is the probability of increalisions in any particular week? b) What is the probability that there will be exactly one collision in a week? c) What is the probability of exactly two collisions in a week? d) What is the probability of finding not more than two collisions in a week? e) What is the probability of finding more than two collisions in a week? f) What is the probability of exactly two collisions in a particular two-week interval? 												
Q2 B	Five employees are required to operate the chemical process, the process cannot be started until all 5 work stations are manned. Employees records indicate that there is 0.3 chance of any one employee being late, and we know that they all come to work independently of each other. Management is interested in knowing the probabilities of 0, 1,2,3,4 or 5 employees being late. So that decision concerning the number of backup personnel can be made.									10	1,3	3	1	
Q 3 A	The number of backup personner can be made. Eight coins were tossed 256 times and following results were obtained. No. of 0 1 2 3 4 5 6 7 8 heads 1 2 3 4 5 6 7 8 frequency 2 6 30 52 67 56 32 10 1 Are coins biased? Use chi-square test.										10	1,2	3	4
Q 3 B	1) Expla 2) What	iin centr are, san	al limit npling a	theorem nd non-	ı. samplin	g errors'	?				10	2	2	3
Q 4 A	An advert picture dis found that rs per day. per day wi company?	ising ma play on On 40 d The ave th std de	anager o vending ays with erage sa ev 25 rs	of one ag g m/c wi hout disp le for ne per day	gency will increa play had ext 40 da , as a cli	hile adv se sales a mean ays whe ent will	ertising . In test sale of n displa you acc	claimed ing his cl 100 rs w y was us cept the c	that an aimed y ith std o ed was laim of	attractive was dev of 20 110 rs	10	2	2	3
Q 4 B	Certain pe drawn and Test if the	sticide i their co average	s packed ontents a packin	d into ba ire found g to be t	ags by a d to be a taken 50	machino s follow grams.	e. A ran /s:50,49	dom sam ,52,44,4:	ple of 1 5,48,46,	10 bags is ,45,49,45.	10	2	2	2
Q 5 A	drawn and their contents are found to be as follows: 50,49,52,44,45,48,46,45,49,45.Test if the average packing to be taken 50 grams.A company manufactures around 200 mopeds. Depending upon the availability of raw materials and other condition, the daily production has been varying from 196 mopeds to 204 mopeds, whose probability distribution is given as followsProduction/day196197198199200201202203204Production/day1961971981992000.150.110.080.06The finished mopeds are transported in specially designed three-storeyed lorry that can accommodate only 200 mopeds. Using the following 15 random numbers 82,89,78,24,53,61,18,45,04,23,50,77,27,54 and 10.Simulate the process to find out 1)1) What will be average number of mopeds waiting in the factory? 2)2) What will be number of empty spaces in the lorry?									ability of from 196 204 8 0.06 lorry that bers	10	2	3	5
Q 5 B	68 57	2) What will be number of empty spaces in the lorry? 68 35 04 74 15 57 88 91 03 08										1,2	3	6

	91		60		73		1	5		60				1	
	52		53		24		0	7	1	82		1		ļ	
	51		18		82		1	3		07]			
	Estimate	Transp	ortation	n cost b	y VAN	1 metho	d and c	heck f	or optim	nality.					
6 A	A travel hotel roo rates in o hotel roo reject the	agency om rates one city om rates e agency	's mark for two has a s in the y's clain	eting b o cities tandard other ci m at α	rochure are the deviat ty has = 0.01.	e indicat same. <i>I</i> ion of \$ a standa	tes that A rando 27.50 a ard devi	the sta om sam and a ra ation o	ndard d ple of 1 indom s if \$29.7:	eviation 3 hotel ample o 5. Can y	s of room f 16 rou	10	2	3	2
5 B	Followir commod	ig data r ity duri	elate to ng last	averag	ge mon nths. D	thly pric etermin	ce(X) a e coeff	nd den of core	and (Y) lation.) of a		10	2,3	3	4
	Price	3.80	2.20	2.40	2.60	2.80	3.20	3	3.60	3.40	4	1			
	demand	20	<u>c</u>		50	5	4.8	1 2	1 1 7	119	1				
7 A	Three va	rieties o VA	of whea	t w1,w	2,w3 ar	e treate	d with	four di	fferent f	ertilizer	<u>s</u> . set	10	1,3	3	3
7 A	Three va up ANO	rieties o VA	of whea	t wl,w	2,w3 ar	e treate	d with	four di	fferent f	ertilizer	s . set	10	1,3	3	3
7 A	Three va up ANO fertilize	rieties o VA	of whea	t w1,w /heat va	2,w3 ar	e treate	d with	four di	fferent f	ertilizer	s . set	10	1,3	3	3
7 A	Three va up ANO	rieties o VA r	of whea	t w1,w /heat va	2,w3 ar	w2	d with	four di	W3	ferti]izer	s . set	10	1,3	3	3
7 A	Three va up ANO fertilize F1 F2	rieties o VA	of whea	t w1,w2 /heat va /1	2,w3 ar	w2 72 66	d with	four di	W3 47 53	ertilizer	s . set		1,3	3	3
7 A	Three va up ANO fertilize F1 F2 F3	rieties o VA	of whea	t w1,w2 /heat va /1	2,w3 ar	W2 72 66	d with	four di	W3 47 53 74	ertilizer	s . set		1,3	3	3
7 A	Three va up ANO fertilize F1 F2 F3	rieties o VA r	of whea W W 55 64 58	1 5.8 t w 1,w /heat va /1	2,w3 ar	W2 72 66 57	d with	four di	W3 47 53 74	ertilizer	s . set		1,3	3	3
7 A	Three va up ANO fertilize F1 F2 F3 F4	rieties o VA r	of whea W W 55 64 58 59	1 5.8 t w l,w: /heat va /1	2,w3 ar	W2 72 66 57 57	d with	four di	W3 47 53 74 58	ertilizer	s . set		1,3	3	3
7 A B	Three va up ANO fertilize F1 F2 F3 F4 The num distributi	rieties o VA r ber of d on. A ra Does the	of whea W V S5 64 58 59 efects i andom s c hypoth	t w l,w t w l,w heat va heat va h h h sample nesis of	2,w3 ar riety st bloc of 60 p Poisso	W2 72 66 57 57 k is hyp precast b n Distri	d with	four di four di ed to f howec see ap	W3 47 53 74 58 ollow Pe the folloropriate	oisson lowing c	s . set	10	1,3	3	3
7 A B	Three va up ANO fertilize F1 F2 F3 F4 The num distributi	ber of d on. A ra Does the Number	of whea w w 55 64 58 59 efects i andom s c hypoth	t w l,w: t w l,w: t w l,w: t w l,w: heat va t heat va heat	2,w3 ar riety ist bloc of 60 p Poisso	w2 72 66 57 57 k is hyp precast b on Distri	d with bothesis blocks s ibution	ed to f howec see ap	W3 47 53 74 58 ollow Pe the foll propriate	oisson lowing c 3	s . set	10	1,3	3	3
7 A B	Three va up ANO fertilize F1 F2 F3 F4 The num distributi	rieties o VA r ber of d on. A ra Does the Number Defects Observe	of whea w w 55 64 58 59 efects i andom s c hypoth o d	t w l,w t w l,w t w l,w t w l,w t w l,w t w t w t w t w t w t w t w t w t w t	2,w3 ar riety st bloc of 60 p Poisso	W2 72 66 57 57 k is hyp precast b n Distri 01 15	d with d with sothesis plocks s ibution	four di four di ed to f howec see ap	W3 47 53 74 58 0llow Pd the foll propriate 0	oisson lowing c 3	s . set	10	1,3	3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION JAN/FEB 2025

Program: M.Tech Construction Management Level

Course Code: PE-MTCM112

Course Name: Advanced Construction Techniques

Notes:

- 1. Attempt any 5 question out of 7 questions.
- 2. Answers to all sub questions should be grouped together.
- 3. Neat diagrams must be drawn wherever necessary.
- 4. Assume Suitable data if necessary and state it clearly.

				·····	
Q.No.	Questions	Points	со	BL	Module No.
	a. Discuss effects and preventive measures of Landslide hazard.	· 8	CO1	BL2	1
1	b. Explain in detail liquefaction of soil.	6	CO1	BL1	1
	c. Discuss challenges identified during construction of underground metro tunnel project.	6	CO1	BL2	2
	a. Describe Tunnel drainage system in detail.	10	CO1	BL2	2
2	b. Explain Earth Pressure Balance TBM.	10	CO1	BL2	2
2	a. Explain in detail various types of cofferdams.	10	CO1	BL2	3
5	b. What is Sustainable construction? Discuss different industrial wastes that can be utilized for making Sustainable construction.	10	CO2	BL2	6

Duration: 3 Hrs.

Semester: I

Maximum Points: 100

Page 1 of 2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION JAN/FEB-2025

				1	
	a. Discuss in detail different methods of drilled shaft.	10	CO1	BL2	3
4	b. Write down in detailed procedure of pavement construction using bitumen. What precautions need to be taken while doing it?	10	C01	BL2	5
	a. Differentiate PEBs vs Conventional steel building.	10	CO2	BL4	6
5	b. Explain low coast Road construction Techniques.	10	CO1	BL2	5
	a. Discuss self-compacted concrete along with its application.	10	CO1	BL 4	4
. 6	b. Elaborate different types of formwork used in construction industries with their advantages.	10	CO1	BL2	4
	 a. Explain 3D printing in construction with respect to i) Key aspects ii) Challenges and limitations 	10	CO3	BL2	7
.7	iii) Future of 3D printing in construction	10.			
	b. Enlist the methods of soil stabilization and explain it along with need for soil stabilization.	10	CO	BL2	1

Page 2 of 2

BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/REFERAM EXAMINATION JAN/FEB 2024-25

Program: Civil Engineering with specialization of Construction Management

Duration: 3 hr.

Course Code: MTCM PEC 122

Maximum Points: 100

Semester: I

Course Name: Appraisal & Implementation of Infrastructure Projects

Notes:

- 1. Q.1 is compulsory & attempt any four out of remaining six
- 2. Illustrate answer with neat sketches wherever required.
- 3. Make suitable assumptions where necessary and state them clearly.

Q.No	Orresti				
•	Questions	Points	BI	- CC	Module
	Attempt any Four				
1.	 Challenges faced by Urban Infrastructure in India. Contents of Detailed Project Report. Technical Appraisal Make a list of success attributes/factors require in audit of Infrastructure projects. Issues in Infrastructure finance planning. 	20	L1	1-3	1-7
2	 A. Define: Infrastructure. Explain any five government schemes sponsored to development of rural infrastructure in India. B. Discuss the various characteristics of infrastructure Projects. 	12 +8	LI	1	1,2
3	 A. Discuss the all phases of Infrastructure Projects in detail. B. Make a list of any 8 external stakeholders in infrastructure development. C. Write a short note on BOT Model 	12+4+4	 L1	1,2	1,2
4	 A. Define: Project Formulation. Discuss the objectives and elements of project formulations in detail. B. Define: Market Appraisal & uncertainties in market appraisal Forecast the demand of Tata Nexon cars for all subsequent years and 2022 in the table below by moving average method and weighted average moving method by assuming most relevant data is past subsequent years with factor 0.9,0.8,0.7,0.6. (also assume n=4) 	12+8	L2/ 2	1,2	2,3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

÷		Year	Actu	al Vali in ('oo	ue (St) 0)	Foreca	ist Value Ft)					
				•		in ('000)					
	[2011		30								
		2012		34			÷			· · ·		
		2013		33				1]				
		2014		32								
		2015		35			-	1				
		2016		35		• • • • • • • • • • • • • • • • • • • •	-	1	1		ļ	
		2017		38		·····	÷ .			ł		
		2018		37			-					
		2019		37			••••••••••••••••••••••••••••••••••••••			.		
		2020		35			······					
		2021		41			-	1				
					·····		· · · · · · · · · · · · · · · · · · ·	1				
		· ·										
	A. V	Vhat do	you me	an by I	nfrastructur	e Proie	ct Finance		╆	+		
	a	nd SPV	? Explai	n all ty	pes of final	nce ava	ilable for					
	Ir	ıfrastru	cture De	velopn	nent in Indi	a.		I	111/			
5	B. W	Vhat is l	Planning	, Comn	nission of h	ndia? E	xplain any	10 +5+ 5	2	2,3	5,6	
·	fo	our func	tions of	planni	ng commiss	sion in			4			
	Ir	nfrastruc	ture De	velopn	nent in India	a.	· ·		1	-	+	· ,: [
	<u> </u>	/hat are	the reas	ons for	common p	orojects	failure?		· ·			
	A. W	hat is	accounti	ng rate	e of return	metho	d? Discuss				-	
	th	e limit	ations o	f ARE	method	Thomas	4: D130035					ļ
	n	niects 3	X V &	7 The	dataila . C	Inere	are inree					
	P ^x	buloto d	1, 100 holom	Z. The	details of	these p	rojects are					
			Delow.	Compa	are and sele	ect bes	t attractive					
	OL	ie by u	sing ave	erage o	or accounti	ng rate	of return					
	m	ethod.										
	Life of	Pro	ject A	P	roject B	P	roject C			1		
6	project	4 y	ears	4	years		vears	8+12	L3	2,3	4.5	
		PAT	BVI	PAT	BVI	DAT	DVI		•			
	1	4	15	3	12	2.5						
	II	4.5	13.50	4.5	10.80	3	9			• • • • •].
		5	12.15	5	9.72	4	8.1					· · ·
1	<u> </u>	4.5	10.935	5.5	8.748	5	7.29				i.	
	VI				7.873	3	6.561					
	PAT= Pr	ofit after	- Tax RVI	= Book	-	2.5	5.905			· .		
	(numbers	in lakhs))	- D00K	value of inve	stment,					- - -	
		······		- 		<u> </u>						
										·		
								· · · · · · · · · · · · · · · · · · ·			····-	

BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF E (Government Aided Autonomous Ins Munshi Nagar, Andheri (W) Mumbai –	ENGINE titute) 400058	ERIN	IG	
 B. What is NITI Aayog? Discuss any five objectives of NITI Aayog. Also discuss any four sources of project finance.				
A. What do you mean by breakeven point analysis? A product currently sells for Rs 11 per unit. The variable costs are Rs 3 per unit, and 9,000 units are sold annually and a profit of Rs. 25,000 is realized per year. A new design will increase the variable costs by %20 and Fixed Costs by %20 but sales will increase to 13,000 units per year.	· · · · · · · · · · · · · · · · · · ·	· ·		
(a) At what selling price do we break even, and(b) If the selling price is to be kept same (Rs 12/unit) what will the annual profit be?				
 B.Discuss: NPV Vs IRR. 1) A project with a 4 year life and a cost of Rs. 235,000 generates revenue of Rs. 50,000 in year 1, Rs. 60,000 in year 2, Rs. 90, 000 in year 3 and Rs. 120,000 in year 4. If the discount rate is 15%, Can we accept the project? 2) Mr. Nitin is considering to invest Rs. 350,000 in a Hardware business. The cash inflows during the first, second and third years are expected to be Rs. 125,000, Rs. 150,000 and Rs, 170,000 respectively. Cost of capital is 12% Calculate the IRR for the proposed investment and interpret your answer. 	10+10	L3	2,3	4

:

- ..

.

- 1²

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

15/1725

End Semester Examination / Re-Examination Jan2025

RM SPR

Duration : 3 hours

Max marks 100

1

- Instructions:
 - Question 1 is compulsory ٠
 - Attempt any four questions out of remaining six •
 - Draw neat diagrams .
 - Assume suitable data if necessary .
 - Use of standard tables are permitted .

MTech	MTech Civil-	MTech Civil-	MTech Electri	cal - Power	MTeo	ch sine D	Mech-				
	Structural	Construction	System	mu rowei	Iviacii		,031 <u>5</u> 1				
Course Code	PC MTSE103	PC-MTCM103	PC-		PC-			1			
Course Code	r¢-miseitos		MTPX103		MTM	(D10)	3				
Question No					N F	Max Poin	СО	BL	Modu le		
			•		t	S		5	M1		
Q1A	State the Guideline	s to write research artic	le			10			toM4		
Q1B	State the guidelines	1	10	CO4	5	M6, M7					
Q2A	What do you mean example.	n by stratification? Exp	lain the stratificatio	n with neces	sary 1	10	CO3	3	M4		
Q2B	What is simple ran What is systematic Illustrate stratified		10	CO3	3	M3					
Q3A	A multi-hospital system (MHS) owns 12 hospitals. Revenues (x, or the independent variable) and profits (y, or the dependent variable) for each hospital are given below. Obtain a regression line for the data, and predict profits for a hospital with \$10 million in revenues. All figures are in millions of dollars.10CO25Multi Hospital System Revenues and Profits DataMulti Hospital System Revenues and Profits Data10CO25										
-	Hospital	Revenue (x)	Profit (y)								
	1	7	0.15								
	2	2	0.10								
	3	6	0.13					Ì			
	4	4	0.15								
	5	14	0.25								
	6	15	0.27		Ì						
	7	16	0.24								
	8	12	0.20								
	9	14	0.27								
	10	20	0.44								

•		11	15		0.34	-					
		12	7	,	0.17						-
	Q3B	Write a shor Pur Eli Pro Re Us	rt note on Tra rpose and Exa gibility ptection Durat gistration e Cases and F	demark usin ample tion Penalties for	g the following	g points	•	10	CO4	3	M6, M7
	Q4A	Explain the	process of fil	ing a copyri	ght with neces	sary flow ch	art. Illustrate	10	CO4	3	M6 M7
	Q4B	What are the Indications	ne different t based on purp	ypes of Inte oose, examp	ellectual prope le, duration	rties. Expla	in Geographical	10	CO4	3	M6 M7
	Q5A	The manage new produc uncertain vi product has as under: Selling Price (Rs.)	ement of ABC t. The fixed c z. the selling a life of only Probabil ity	C company ost required price, varial one year. Th Variabl e Cost (Rs.)	is considering in the project i ble cost and the ne management Probabilit y	the questions Rs.8,000. ey annual sathas the data Sales Volum e (Units)	n of marketing a Three factors are ales volume. The a on three factors Probabilit y	5	CO3	5	M4
		5	0.3	3	0.3	4,000	0.2				
		6	0.3	4	0.6	5,000	0.3				
		7	0.4	5	0.1	6,000	0.5	1			
		Considering 81, 32, 60, 31, 86, 68, Using the s	g the followir 04, 46, 31, 6 82, 89, 25, 11 equence (firs offit for the ab	ig sequence 7, 25, 24, 10 1, 98, 16. t 3 random ove project	of thirty rando), 40, 02, 39, 6 numbers for th on the basis of	m numbers: 8, 08, 59, 6 e first trial 10 trails.	6, 90, 12, 64, 79, etc.) simulate the				
	Q5B	Write a sho • Do • To • K • A	ort note on Sa efinition and ypes of sampl ey concepts a dvantages of	10	CO2 CO3	4	M4				
	06A	Explain	n Tistens	riew Ter	chrighes,	with ex	angles	10	C02	3	M3
	Q6	Refer the f N1 = 6500 are: s1=1 allocated disproport 4600 what	following the N2 = 4500, N N2 = 4500, N N2 = 11, s to the three ionate sampli can be cost of	example. A V3 == 5500 ar = 9 and s4= e strata, ng design? l lisproportion	population is o ad N4=7500 Re 7. How shou if we want if the cost for s pate sampling o	livided into spective si ld a sample optimum strata is 440 lesign?	four strata so that andard deviations of size $n = 96$ be allocation using 0, 3800, 3500 and	10	CO3	5	M3
	Q7 A	A new pro existing cu and 9,8,7,2,3,8 have an av to know th significan	boduct is launation boduct is launation boduct is launation listomers of the 10 bein 3,9,7,9,10,4,3, verage rating the hat the South ce.	12 E	CO3	5	M4				
	Q7 B	In a quest options w that 130 p the custor	ionnaire there ere in yes or people said ye ner based on	e was a ques no format. T s and 70 peo analogue wa	stion - do you The data from a ople said no. Th atches. Use 5%	have an and a sample of he researche level of sig	alogue watch? The 200 people show or wants to find ou nificance.	e 08 s t		5	IV14

4

•

•

-

.

2

Annexure I: Z Table

Areas of a standard normal distribution

 i	Z	· .0	0.01	.02	.03	.04	.05	.96	.07	.08	.09
	a	0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
:	. . 1	0398	.0438	.0178	.0517	.0557	.0596	.0636	.0675	.0714	.0753
	- J. 2	0793	.0832	.0371	.0910	.0948	.0987	.1026	.1064	.1103	.1141
:	 ۲	1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
÷	4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	1808	.1844	.1879
;	5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	,2224
; .	.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
	.7	.2580	.2611	.2642	.2673	.2903	.2734	.2764	.2794	.2823	.2852
•	.8	,2881	.2910	.2939	,2967	.2995	.3023	.3051	.3078	.3106	.3133
	.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	,3365	.3389
•	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
·	1.1	.3643	.3665	.3686	.3708	.3729	.3749	3770	.3790	.3810	.3830
•	1.2	.3849	_3869	.3888	.3907	.3925	.3944	3962	.3980	.3997	.4015
i	1.3	.4032	.4049	.4066	.4082	.4099	A115	.4131	.4147	.4162	.4177
·	1,4	.4192	.4207	4222	.4238	.4251	.4265	.4279	.4292	.4306	,4319
	1,5	.4332	.4345	.4357	.4370	.4382	.4394	4406	.4418	.4429	.4441
	1.6	.4452	.4463	4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
i	1.7	.4554	. 1564	.4573	.4582	.4591	A599	.4608	.4616	.4625	.4633
1	1.8	.4641	.4649	.4656	.466±	.4671	.4678	.4686	.4693	.4699	,4706
•	19	.4713	.4749	.1726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
	2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
	2.1	.4821	4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
:	2.2	.4861	.4864	.4868	.4871	4875	.4878	.4881	.4884	.4887	.4890
	2.3	.4893	.4896	.4898	.4901	4904	.4906	.4909	.4911	.4913	.4916
	2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
:	2.5	,4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
	2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	4964
ļ	2.7	4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
:	2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
	2.9	4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
	3.0	.4987	.4987	4987	4988	.4988	.4989	.4989	.498 9	.4990	.4990

S

.....

ł

•

ŧ

Annexure II: Chi Square

Table 3:	Critical	Values	of 7	ff. V
----------	----------	--------	------	----------

Í

Degrees	Probability under H_0 that of χ^2 > Chi square							
of freedom	.99	.95 .50		,10 .05		.02	.01	
ل مستد ، منتخب ، م ا	000157	.00393	.455	2.706	3.841	5.412	6.635	
2	0201	.103	1.386	4.605	5,991	7.824	9.210	
- 3	.115 .297 .554	.352 .711 .1145	2,366 3.357 4.351	6.251 7.779 9.236	7.815	9.837 11.668 13.388	11.341 13.277 15.086	
9 1					9.488			
5					11.070			
6	872	1.635	5.3-18	10.615	12.592	15.033	16.812	
	1.239	2,167	6.316	12.017	14.067	16.622	18.475	
. 1 8	1.646	2.733	7.344	13.362	15,507	18.168	20,090	
. 0	2 088	3.325	8.3-13	14.684	16.919	19.679	21.666	
່ ອ 10	2.558	3.940	9.342	15,987	18.307	21,161	23.209	
2V 	2 /15 2	4.575	10.341	17.275	19.675	22.618	24.725	
11 12	2 571	5 226	11.340	18.549	21.026	21.054	26.217	
, 12 19	J.J.T. A 107	5,892	12.340	19.812	22,362	25.472	72.688	
· 10	4.660	6.571	13,339	21.061	23.685	26.873	29.141	
14	4.229	7.261	14.339	22.307	24,996	28.259	30.578	
	5.812	7.962	15.338	23.542	26.296	29.633	32.000	
10	6.108	8672	16.338	24.769	27.587	30.995	33,409	
10	2015	9.390	17.338	25.989	28.869	32.346	31.805	
10	7 633	10.117	18,338	27.204	30,144	33,687	36,191	
ເຍັ 20	8.260	10.851	19.337	28.412	31.410	35.020	37.566	
	8 897	11.591	20.337	29.615	32.671	36.343	38.932	
21	9.542	12.338	21.337	30.813	33.924	37.659	40.289	
<u>່ 22</u> ທີ່	10 196	13.091	22.337	32.007	35.172	38,968	41,638	
دع ب 24	10.100	13,848	23.337	32.196	36.415	40.270	12.980	
2 ¹ 25	11.524	14.611	24.337	34.382	37.652	41.566	44.314	
	12 198	15.379	25.336	35.363	38.885	41,856	45.642	
20 	12.190	18 151	26.336	36.741-	-40.113	44,140	46.963 -	
<u>4</u>	10,010 12,010	16.028	27.336	37.916	41.337	45.419	48.278	
26 m	10,000 1,8,956	17.708	28.336	39.087	42,557	46.693	49.588	
ය 30	14,953	18.493	29.336	40.256	43.773	47.962	50.892	

,

i

-

1 --

! 1

.

1

:

1

:

:

:

1

Д