-	Bharatiya Vidya Bhavan's	
	Sardar Patel College of En (A Government Aided Autonomou	ngineering
No.	Munshi Nagar, Andheri (West), Mum End Semester Examination/ Re-Examination/	bai – 400058. amination
	January/Rebruary - 2025	
Class: M.Tech.	FY: MITELL Serverit Semester: I se: Structural Dynamics	Program: Civil Engineering Course Code : PC- MST 101

Instructions:

- ٠
- •
- e
- Answer any five questions. Answers to all sub questions should be grouped together. Figures to the right indicate full marks. Assume suitable data if necessary and state the same clearly. ٠

Question		Points	CO	BL	Module No.
<u>No</u>	What is normal mode? Explain briefly characteristics of	3	3	4	5
Q1 (a)	normal mode.				
	For the rigid body system shown in figure:	12	2	3	.4
	(a) Formulate the equation of motion		et T		
	(b) Determine the natural frequency and damping ratio				
	(c) Calculate the maximum response $u_0(x)$				•
	PCH		050 1	Dí.	in
Q1(b)	Rigid bar of mall my		ergid pf,	rass	m2_
	VIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4/2			
	$ \begin{array}{c} \downarrow \\ \downarrow $				· .
	X L12 X L12 X L12 X L14 X L12	*			
	$m_1 = 1000 \text{ Ky} m_2 = 500 \text{ Kg} K_1 = 100 \text{ Kg}$ $K_2 = 500 \text{ Kg/m} \cdot C = 1 \text{ Kg} \cdot \text{ Kg/se} \cdot L$	6 Kolm			
	K2 = 500 Ku/m. C = 1 Kur-m/see. L	-= 2m			

			-		14
				at 1.55	
	1 maria load	5	2	3	2
wi fre the	rigid steel frame shown in figure is subject to harmonic load th amplitude of load 200KN and frequency 1.5 times the equency of structure. Assuming the ratio as 2%, determine e maximum displacement at girder level and bending moment the columns. F(t) VII $m=5t$				
	A hallow circular cantilever column shown in figure i	<u> </u>	2	3	2
Q2 (a)	subjected to a triangular pulse type toud up offer Calculate the maximum horizontal displacement maximum bending moment in column. The response spectra for the dynamic load are also shown in the figure. $F(H) = 5 \pm \frac{180 \text{ mm}}{10} = 5 \pm \frac{180 \text{ mm}}{10} = \frac{140 \text{ mm}}{10} = 140 $	$\frac{n}{15}$		~A. 2	3 2
	tor Transmissionity reacted and				
Q2(b)	explain how vibration isolation can				3 2
Q2(c)	An air-conditioning unit weighing 5 KN is supported a mid-span of the simply supported beam of span 6m. The m in the air conditioning unit excite the vertical compone the force on the beam of amplitude 270 N at the speed of rpm.(Harmonic load) Neglecting the weight of the beam assuming 5% damping, determine the amplitude of s	notor nt of f 300 n and teady force	6	2	
	assuming 5% damping, determine the amplitude state deflection of the beam at mid-span and the transmitted to the supports. $E = 2 \times 10^5 \text{ N/mm}^2$, $I = 2 \times 10^8 \text{ m}$	nm ⁴ .			

, .

. •

-

	na fa sa ta sa ta sa			· · · · · · ·	
			3	4	F,
	Frame has storey height 01 4 m. The		ļ		
F	A three storey single bay frame has storey in x_{0} wide X 600 columns on ground and first story are 250 mm wide X 600				
	columns on ground and first story are 2° and 2° mm x mm deep while at 2^{nd} story the size a column is 250 mm x		l	1	
Q3	450 mm & beams are very stift. The mass and Mpa. Calculate is 30 t . while on 3^{rd} floor it is 25t . E = 20000 Mpa. Calculate			I	
	is 30 t. while on 3" hoor it is 250 2				
	natural frequencies & mode shapes			<u> </u>	
		5	3	3	5
	State and prove orthogonality principle. Also state the			 	<u>_</u>
Q4(a)	State and prove orthogonality principle in dynamic analysis significance of orthogonality principle in dynamic analysis				
	<u> </u>			<u>_</u>	
	abaracteristics as	15	2	4	(
	A three storey frame with free vibration characteristics as			Ì	
	A three storey frame with free vibration chandle amplitude given below is subjected to a harmonic force with amplitude given below is subjected to a harmonic force with amplitude				
	100 KN and at frequency of 20 radi section and 50K	ļ			
	100 KN and at frequency of 20 rad/sec. at the single floor and 50K 75 KN amplitude with same frequency at 1 st floor. Calculate amplitude with same frequency at 1 st floor. Calculate first same frequency at 1 st floor.		l	ł	
o. (()	amplitude with same frequency at a moon pratio				
Q4 (b)	amplitude with same frequency at a filled amping ratio maximum displacements of each storey. Take damping ratio		1		
	=5%.		Ì		ļ
	More Mass (0) Mode shapes		1		ł
	Story Mass Mass advec				
	No. No. (t) rad/sec $\Phi_{i1} \Phi_{i2} \Phi_{i3}$				
			ļ		
	1 30 15.75 0.555 0.727 0.471		Ì		l
	2 12 30 49.85 1.0 0.192				
	2 25 77.82 -0.908 1.0 -0.192				
		8	_	1	3
	For the beam shown in figure calculate the fundamental	0			
	Frequency using Rayleigh S Method.		ļ	ļ	
	m=100 kg/m = H		ł	ļ	
Q 5(a)	A				
	4m				
	7				
	$E = 2 \times 10^{5} \text{ N/mm}^{2} \text{ I} = 2 \times 10^{8} \text{ mm}^{4}$			-+	4
	11 of 8m span 300 mill who over mill	12	ļ	4	-
	A simply supported beam of one spran,			ł	
	A simply supported beam of sin spin, both at quarter deep carries a suddenly applied force of 200 KN at quarter				
				1	
Q 5(b)					
	at left support. $E = 2x10^{-1}$ what are density kg/m ³ . Take contribution from the four lowest contributing				
	modes	┼			
	Houes			ļ	
1					

. 4 ≫

1.010.000

	· · · · · · · · · · · · · · · · · · ·				
Q6(a)	For the simply supported beam shown in figure, calculate the natural frequencies and mode shapes. $m_1 = 5t$ $m_2 = 10t$ $m_1 = 5t$ $m_2 = 10t$ $m_1 = 5t$ $m_2 = 10t$	10	3	4	5
Q6(b)	If the beam referred in Q6 (a) above, a suddenly applied constant load of 100 KN under second mass m ₂ , calculated the maximum reposes under each mass.	10	3	3	6
Q 7(a)	Starting from first principal, derive the expression for natural frequency and mode shape for a simply supported beam with uniformly distributed mass.	10.	4	2	7
Q 7(b)	Represent the periodic load shown in figure in terms of Fourier Series and determine the response of damped SDOF system subjected above periodic load. $\frac{1}{P_0}$	10	5	3	3

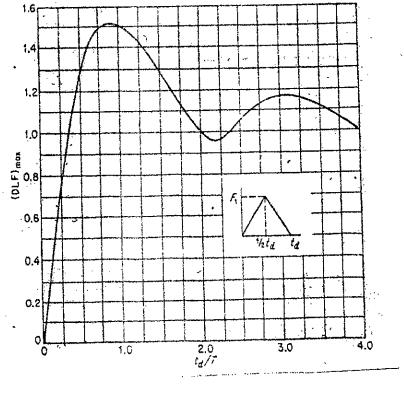


Fig for Q.NO 2(a)

4.

:

ļ

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

والارتدار فالمتحافظ

END SEM/RE-EXAM EXAMINATION JAN/EEB 2025

Program: M. Tech Civil - Structures

Course Code: PC-MTSE102

Duration: 3 Hrs 611/15

Maximum Points: 100

Semester: I

Course Name: Advanced Theory of Structures

الالالية وهادا العده محاجرات الحدائف الداخصي

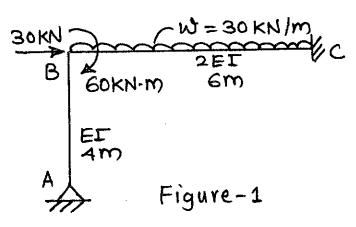
Notes:

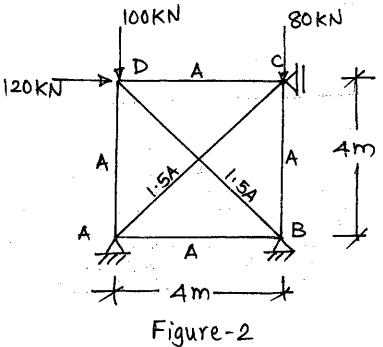
- 1. Attempt any 5 questions
- 2. Answer to each new question to be started on a fresh page.
- 3. Figures in brackets on the right-hand side indicate full marks.
- 4. Assume Suitable data if necessary and state it clearly.

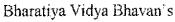
Q. No.		Points	со	BL	Module No.	
1	A. From the first principle, derive the stiffness matrix	10	2	3	1	
	for the member of the space frame.				-	
1	B. Generate the expressions for shear force, bending	10	3	3	5	
	moment and twisting moment at any point in the ring					
	beam of radius 'R', resting on six equally spaced					
2	supports, subjected to uniformly distributed load 'w'.					
<u> </u>	A. From the first principle, derive the formulae for	10	4	3	7	
	deflection, rotations, bending moment and shear force					
	at any point for a semi-infinite beam resting on elastic supports subjected to point load at its end.					
	B. Using the above formulae, plot the variation of the	10			-	
	deflection, shear force and bending moment for a	10	4	4	7	
	semi-infinite beam of size 1000 mm in width and 600					
	mm in depth subjected to a point load of 500 kN	j		Î		
	acting at its end. Assume modulus of elasticity of the					
	beam material as 25 GPa and soil stiffness as 2500				1	
	kN/m/m length of the beam.					
3	A. Explain the difference between straight and curved beams.	05	3.	. 3	6	
	B. A circular ring of a steel chain is made up of 32 mm	15	3	4	6	
	diameter rod with a mean radius of 100 mm. The ring	15	5	-	0	
	is subjected to a tensile force of 200 kN. Determine	ļ				
	maximum stresses developed in the ring. Also plot					
	the variation of stresses across the section at the					
	critical sections. Assume $E = 200$ GPa and $G = 80$				-	
	GPa.					
4	Determine the forces developed in the rigid jointed plane	20	1	4	4	
	frame shown in figure 1 using flexibility matrix	H				
	approach. Also plot the variation of bending moment.					

Page 1 of 3

5 **5** 5


SARDAR PATEL COLLEGE OF ENGINEERING


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058


END SEM/RE-EXAMINATION JAN/FEB-2025

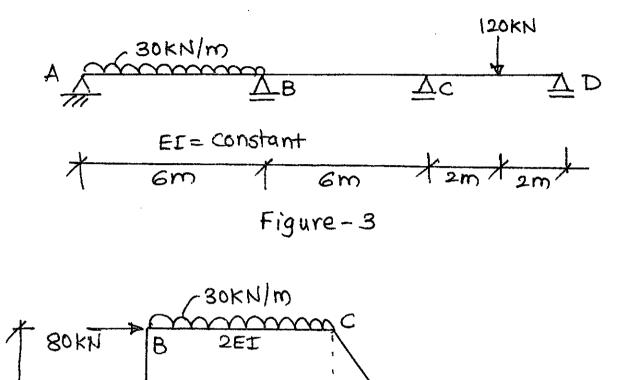
5	Determine the forces developed in the pin jointed plane	20	2	4	3
د		20	2	T	5
	frame shown in figure 2 using stiffness matrix approach.		<u> </u>		
6	A. Determine the forces developed in the rigid beam	15	2	4	3
	shown in figure 3 using stiffness matrix approach.				
	Also plot the variation of bending moment and the				
	deflected shape of the beam. Note that support B				
	settles down by 20 mm and $EI = 25000 \text{ kN-m}^2$.	1			
	B. Explain the procedure for analysis of indeterminate	05	2	3	2
	structure subjected to temperature change using				
	stiffness matrix approach				
7	Determine the forces developed in the rigid jointed plane	20	2	4	3
	frame shown in figure 4 using stiffness matrix approach.				
	Also plot the variation of bending moment and deflected				
	shape.				

Page 2 of 3

Am

EL

4m


Figure-4.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION JAN/FEB-2025

1.SET

- 3M

D

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai- 400058

End Semester/Re-Examination- January/Fehrmary 2025

Program: M.Tech. (Structural Engineering)

16/11/25

Duration: 3 Hours

Semester: I

Maximum Points: 100

Course Name: Program Elective-II: Non Linear Analysis

Instructions:

Course Code: PE-MTSE121

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	со	BL	Module No
Q1(a)	What are the assumptions made in the plastic theory of bending?	(05)	1	1,2	1
Q1(b)	Write a note on the factors affecting the lateral buckling of a beam.	(05)	4	1,2	7
Q1(c)	Write a note on different methods of buckling analysis of a column.	(05)	3	2	4
Q1(d)	Explain St. Venant's torque and Torsion-bending torque.	(05)	4	2	6
Q2(a)	A steel beam of rectangular section 100 mm wide and 200 mm deep is simply supported over a span of 4 m. If the beam carries a uniformly distributed load of 30 kN / m length on the entire span, find the depth of the elastic core and the moment resisted by the elastic core at the mid- span. The yield stress of steel 250 N/mm ² .	(10)	1	3,4	1
Q2(b)	Find the shape factor of an unsymmetrical I section with following details: Top flange width = 200 mm & thickness = 20 mm Bottom flange width = 300 mm & thickness = 30 mm Depth of web = 200 mm and thickness of web = 20 mm	(10)	1	3,4	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re: Examination- January/February 2025

Q3	For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in kN-m is also shown in the figure.		1	3,4	2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
-	min min				
Q4(a)	A continuous beam is subjected to working loads as shown in figure below. If $M_P = 75$ kN-m, calculate the (true) load factor for the beam. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(10)	1	3,4	1
Q4(b)	With derivation of the expression, write a note on the effect of shear force on plastic moment capacity of a flexural member of rectangular cross section.	1	2	1,2, 3	3
Q5(a)	A simply supported column of length L is under the action of a compressive load P. Find the critical load by finite difference method if the flexural rigidity of the member varies uniformly from EI at either end to 2EI at the center.		3	3,4	4
Q5(b)	For the column given in Q5(a) above, find the critical load by <u>energy</u> <u>method</u> .	(10)	3	3,4	4

SARDAR PATEL COLLEGE OF ENGINEERING

.....

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Res. Examination- January/February 2025

Q6(a)	Determine the critical load for the frame shown in figure.	(15)	3	3,4	-5
	$\begin{cases} A & 4m \\ \hline B & EI \\ \end{bmatrix} B$				
	EL 4 m				
Q6(b)	Explain the modes of buckling in case of a channel section symmetrical about X-axis.	(05)	4	2	6
Q7(a)	A steel beam of rectangular cross section 50 mmx 200 mm and span 5m, is subjected to end moments M at its both the ends. Find the value of M at which it buckles laterally. $E=2x10^5 \text{ N/mm}^2$, $G=0.769x10^5 \text{ N/mm}^2$	(06)	4	1,2	7
Q7(b)	Derive the governing differential equation for the torsional buckling of column with symmetrical cross- section.	(14)	4	1,2, 3	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/RE-EXAMINATION JANUARY/ FEBRUARY-2025

Program: M. TECH (STRUCTURES)

Course Code: PE-MTSE131

Maximum Points: 100

Semester: I

Course Name: Advanced solid Mechanics

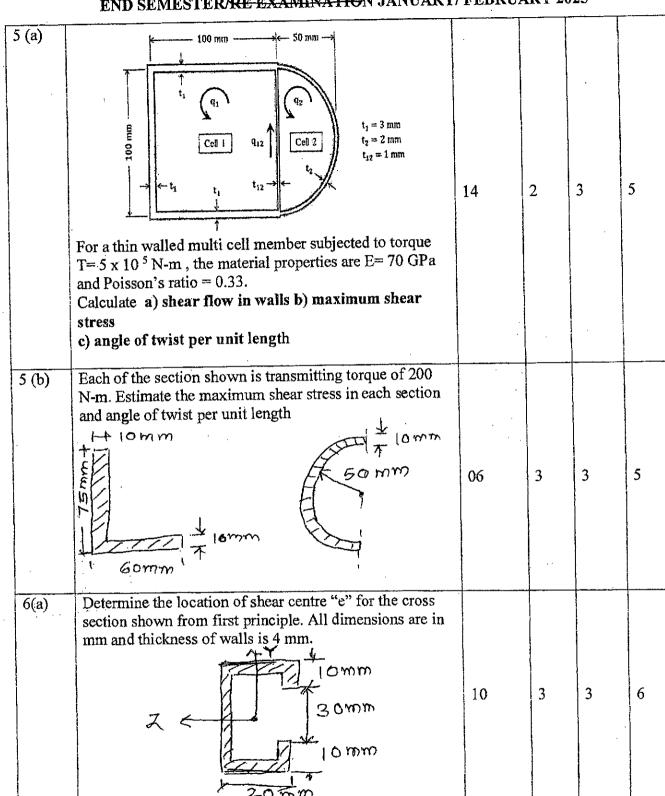
Notes: Solve any 5 questions.

Q.No.	Questions	Points	со	BL	Module
1 (a)	The state of stress in Mpa at a point is given by $ \begin{bmatrix} 12 & -10 & 08 \\ -10 & 08 & 04 \\ 08 & 04 & 15 \end{bmatrix} $ If the element is rotated by 45° about the Z axis in the anticlockwise direction, Determine the new strain tensor	10	1	3	1
	at this point. Take $E = 2 \times 10^5$ N/mm ² , Poisson's ratio = 0.28.				
1(b)	A thin-walled tube is fabricated of a brittle material having ultimate tensile and compressive strengths $\sigma t =$ 300 MPa and $\sigma c =$ 700 MPa. The radius and thickness of the tube are r = 100 mm and t = 5 mm. Calculate the limiting torque that can be applied without causing failure by fracture. Apply (a) the Tresca theory and (b) the Von- Mises theory.	10	3	3	7
2(a)	Using the stress function $\oint = Axy + Bx^2 + Cx^2y + By^2 + Exy^2 + Fz^2$ Obtain the stress field for simply supported beam of length L subjected to point load of magnitude 2 P at mid span cross section dimension of beam is 2c depth and b width (consider Xaxis @ centre of beam 4 Yaxis @ mid span)	12	2	3	3

Page 1 of 4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058


	END SEMESTER/RE EXAMINATION JANUARY	/ FEBRU	4RY 20	25	
2(b)	A body with a plane stress field has material properties				
	E= 200 GPa and $v=0.3$ and has following displacement				
	field,				
	$u(x, y) = 28 x^2 - 10 x^3 y + 18 y^3 mm$				
	$v(x, y) = =10 x^3 + 20xy^3 + 6 y^2 mm$	08	1	3	4
5	Where, x and y are in meters. Determine stresses and				
	rotation of the body at $x = 0.080$ m and $y = 0.025$ met		-		
	Check if the displacement field is compatible.				
3	The stress field at a point with respect to X, Y, Z				
5	coordinate system is given by the array in MPa as				
	1				
	$\begin{bmatrix} 40 & 18 & 22 \\ 18 & -12 & -15 \\ 22 & -15 & 14 \end{bmatrix}$ MPa	20	1	3	1
	Calculate principal stresses and direction cosine				
	associated with maximum value of stress				
4(a)	Prove that to convert a plane strain solution to a plane				
	stress solution you substitute $\frac{1+22}{(1+2)^2} \in \mathcal{E} \subset \frac{1}{1+2}$	08	1	3	2
	For E and \mathcal{V} respectively.				
4(b)	For the beam shown determine the displacement field due				
	to bending only. Consider the cross section of beam to be				
	rectangular and thin so that deflections are not functions				
	of z.				
	The stiffness of the beam is Eiz and poisson's ratio v.	12	2	3	1
	TY JP	12		2	
	1				
				-	

Page 2 of 4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/RE EXAMINATION JANUARY/FEBRUARY 2025

Page 3 of 4

SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058 END SEMESTER/RE EXAMINATION JANUARY/ FEBRUARY-2025					
	For plate loaded in tension by force per unit area σ , is having circular hole at centre. Outer diameter of the plate is very large compared to diameter of hole 2a. Use Airy's stress approach with polar coordinates $\int \int \int 2q dr$	20	2	3	4

;

Page 4 of 4