SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION DECEMBER 2024 11224

Program: B. Tech (Civil) Level VI

Course Code: PC-BTC701

Duration: 3 Hr Maximum Points: 100 Semester: VII

* 5

Course Name: Design of concrete structure

Semester: VII

Notes: Question no. 1 compulsory Solve any two questions out of remaining question.

Q.No.	Questions	Points	СО	BL	Modu No.
1 (a)	What is the permissible crack width allowed for water tank walls? What are different measures taken to limit permissible crack width for water tank	05	CO1	02	06
1 (b)	Explain difference between structural behavior of cantilever and counterfort retaining wall.	05	CO1	02	05
1(c)	Why Ductile detailing, as outlined in IS 13920:2016, is crucial even when a structure is designed using IS 1893, which considers seismic loads. Explain in detail	10	C03	02	04
2(a)	Design a staircase block dimensions for dog legged staircase case to be provided for floor to floor height of 3.00 M. Design flight of dog legged staircase from floor slab to mid landing slab The Live load on slab is 4.0 kn/m2, floor finish is 1.0 kn/m2 in addition to self-weight of slab. Use M20 concrete and Fe 415 steel. Draw a section to the scale showing reinforcement details.	15	CO1/CO2/ CO3	03	01
2(b)	What is the meaning of ductile detailing and where it is mandatory as per IS codes	05	СОЗ	02	04
3	For a cantilever retaining wall retaining inclined soil backfill at an angle of 15°, of height 4.0 m above toe side ground floor. The good soil strata is available at depth of 1.5 m with SBC of soil as 160 kn/m ² . The angle of shearing resistance for soil is 30°, Unit weight of soil is 16 Kn/m ³ Coefficient of friction between soil and concrete is 0.5. Use M20 concrete and Fe 415 steel. Perform stability checks. Design Toe slab only. Draw a section to the scale showing reinforcement details.	20	CO1/CO2/ CO3	03	05

SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION DECEMBER 2024

4(a)	Design interior panel of flat slab with drop, of c/c distance between columns 7.0 m in both directions. Use floor finish load as 1.0 Kn/m ² and live load 4.0 Kn/m ² .size of column 500 mm x 500 mm. Use M40 concrete and Fe 415 steel. Use direct design method Design for moments, shear check required. Draw reinforcement in plan clearly marking bottom and top reinforcement	17	CO1/CO2/ CO3	03	02
4(b)	Explain why flat slabs are not provided in high seismic zones	03	CO1	03	02
5(a)	For the slab arrangement shown, calculate final design moments after balancing. Slab is subjected to floor finish load as 1.0 Kn/m ² and live load 3.0 Kn/m ² . Design reinforcement. Use M20 grade of concrete and Fe 415 steel. Draw a section AA showing Reinforcement $A = 5m$ — 4 M = 5m $M = 5m$	12	CO1/CO3	03	03
5(b)	Design circular water tank with flexible base joint for 450,000 liters resting on ground and open at top. Use M30 grade concrete and Fe 415 grade steel	08	CO1/CO3	03	06
6(a)	Design circular water tank with rigid fixed joint at base for height of tank 6.0 m and diameter of tank 14 m resting on ground and open at top. Use M30 grade concrete and Fe 415 grade steel. Use IS 3370 code coefficients for moment and shear calculations. Draw sectional elevations showing reinforcement details.	14	CO1/CO2/ CO3	03	07

Pg 2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION DECEMBER 2024

6(b)	Analyse and design beam marked on plan as B1. Thickness of slab 150 mm, floor finish 1.0 Kn/m ² and live load 4.0 Kn/m ² . 230 mm thk brick wall of height 3.00 m is resting on beam 1 3 4m 1 4m 1 6m 1	06		03	04
7	Design rectangular water tank resting on ground open at top of size 4.00 m x 7.00 m in plan and height 3.5 m. Free board is 150 mm using approximate analysis. Calculate the reinforcement using M 30 concrete and Fe 415 steel. Draw reinforcement in plan and also in sectional elevation.	20	CO1/CO2/ CO3	03	07

93

Free Standard provided by BIS via BSB Edge Private Limited to Sourav Dutta - Kolkata(cena22ster@gmail.com) 136.232.70.162 [for non-commercial use only].

IS 3370 (Part 4/Sec 3) : 2021

			Coeffic	ients at Poin	it (see Note	s I and 2 at	the end of T	thie SA 1		
H²/Dt	0.0 <i>H</i>	0.1 <i>H</i>	0.2 <i>H</i>	0.3H	0.4 <i>H</i>	0.5H	0,6H	0:7H	0.8H	0.94
0,4	+0.582	+0.505	+0.431	+0.353	+0.277	+0.205	+0.145	+0.092	+0,046	+0.013
0.8	+1.052	+0.921	+0.796	+0.669	+0.542	+0.415	+0.289	+0.179	+0.089	+0.024
1.2	+1.218	+1.078	+0.946	+0.808	+0.665	+0.519	+0.378	+0.246	+0.127	+0.034
1.6	+1.257	+1.141	+1.009	+0,881	+0.742	+0.600	+0:449	+0.294	+0.153	+0.045
: 2.0	+1:253	+1.144	+1.041	+0.929	+0.806	+0.667	+0.514	+0.345	+0.186	+0.055
3.0	+1.160	+1.112	+1.061	+0.998	+0.912	+0.796	+0.646	+0,459	+0.258	+0.081
4.0	+1.085	+1.073	+1.057	+1.029	+0.977	+0,887	+0,746	+0.553	+0.322	+0,105
5,0	+1.037	+1.044	+1.047	+1.042	+1.015	+0.949	+0.825	+0.629	+0.379	+0.128
6.0	+1.010	+1.024	+1.038	+1.045	+1.034	+0,986	+0.879	+0.694	+0.430	+0.149
8.0	+0.989	÷1.005	+1.022	+1.036	+1.044	+1.026	+0.953	+0,788	+0.519	+0.189
0.01	+0.989	+0.998	+1.010	+1.023	+1.039	+1.040	+0.996	+0.859	+0 591	+0.226
12.0	+0.994	+0.997	+1.003	+1.014	+1.031	+1.043	+1.022	+0.911	+0.652	+0.262
14.0	+0.997	0.998	+1.000	÷1.007	+1.022	+1.040	+1.035	+0.949	+0.705	+0.294
16.0	+1.00 0	0.999	+0:999	+1.003	+1.015	+3,032	+1.040	+0.975	+0.750	+0.321

 Table 5 Ring Tension Coefficients for Case 2 Arrangement

 (Table 1, Clauses 3.1 and 3.1.6)

1

К. П.

1.445

4 7 1

and a strategy of the second

*

1

3

Table 5A Supplementary Ring Tension Coefficients for Case 2 Arrangement

(Tables 1 and 5. Clauses 3.1 and 3.1.6)

122/04		Coefficier	ats at Point (see Notes	1 and 2 }	
	0.75H	0.80 <i>H</i>	0.85H	0.90//	0.95H
20	+0.949	+0.825	+0.629	÷0.379	+0,128
24	+0.986	+0.879	+(1.694	-+0.430	+0:149
32	+1.026	+0.953	+0.788	+0.514	+0.189
40	+1.040	+0.996	+0.859	+0,591	+0.226
48	+1.043	+1,022	+0.911	+0 652	+0.262
56	+1.049	+1,035	+0.949	H0.703	+0.294

NOTES

1 Positive sign indicates tension.

2 The point, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

Free Standard provided by BIS via BSB Edge Private Limited to Sourav Dutta - Kolkata(cena22ster@gmail.com) 136.232.70.162 [for non-commercial use only].

IS 3370 (Part 4/Sec 3) : 2021

Table 6 Moment Coefficients for Case 2 Arrangement

(Table 1, Clauses 3.1 and 3.1.6)

H ² /Dt		Coefficients at Point (see Notes 1 and 2 at the end of Table (1)												
	0.1 <i>H</i>	0.2 <i>H</i>	0.3H	0.4 <i>H</i>	0.54	0.01		Tapie 6A)						
0.4	-002 3	009 3	022.7	- 042.0		0.0/7	0.7H	0.8H	0.9H	1.0H				
0.8	.000 0	- 000.6	002.6	043 9	0/1 0	101 8	145 5	200 0	-259%	331 (
12	+000 8	1.000 0	2.002.5	008 3	018 5	-:036 2	059 4	091 7	132.5	- 183 4				
	+ 001 -	7.002.6	+:003 7	+.002.9	- 000-9	008 9	022.7	046 8	-0815	1170				
1.0	+.0011	+ 003 6	+.006 2	r.007 7	+ 006 8	+.001 1	- 009 3	- 026 7	052.0	- 11/0				
2.0	+.001 0	+.003-6	.006 6	+.008 8	+.008.9	+.005 9	- 001 9	0163	0329	1087.6				
3.0	1.000 7	+.002.6	+.005 1	+.007.4	+.0091	+ 008 3	004.2	0107	038 G	•.071 9				
4.0	+.000.4	+.001 5	+.003 3	+.005 2	+ 006 8	+ 007.6	004 2	-0053	022 3	048 3				
5.0	+.000.2	+.000 8	+.001.9	+ 003.5	+ 000 1	*.007 5	005 3	E 100	014 5	036 5				
6.0	t.000 I	+.000 4	+ 001 3	+ 000 0		+.006 1	005.2~	+ 000 7	010 ;	029 3				
8.0	.000 0	+ 000 1	+ 000 2	.002.2	+.003 6	+.004 9	004 8	+.001 7	-0075	-,024.2				
10.0	000.0	0001	+.000 3	+.000 8	+.001 8	+.003 1	003 8	+.902.4	004 ()	0184				
120	000.0	0001	0 000.	+.000.2	+.000 9	+.002 !	+.003.0	+.002.6	-002.5					
12,0	0.000	0 000.	000 1	.000.0	+.0004	+.001.4	+.002.4	+ 002.2	001.0	-,0]47				
14.0	0 000.	.000.0	0 000.	.000.0	+.000 z	+.001 0	+0018	+ 002 +		0123				
16.0	0 000	.000.0	.000.0	000 1	+.000 1	+ 000 6	+ 001.0	+.0021	000 😭	010.5				
							*.0012	+.002.0	- 000 5	- 009 1				

Table 6A Supplementary Moment Coefficients for Case 2 Arrangement

(Tables 1 and 6, Clauses 3.1 and 3.1.6)

H'/Dt		Coeffici	ents at Point (see Note	is 1 and 2)	
	0.80H	0.85H	0.90H	1 0000	
20	+.001 5	+.001 3	+ 000 2	0.9574	1.004
24	+.001 2	+ 001.2	.000 2	002.4	007.3
32	÷.000 8	+ 000.0	+.0004	001 8	006 1
40	+ 000 5	+.000 9	+.0006	001 0	- 004 6
48		+.000 7	+.000 7	000 5	003 7
	±.000.4	+.000 6	+ 000 6	- 000 3	- 603 1
	+.000.2	+.000 4	+.000 5	- 000 1	

NOTES

r

1 Positi vesign indicates tension in the outside.

2 The projet, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

9

•

4

÷

•

a tradica National

•.

1

• •

:

÷

.

•••

ł

ð fæ	z	z/a y = 0			r == ≱/4	,	2 - 1/2		
		Me	M _a		м,	M.	H.		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
1-75	0	0	+0.02	5 0	+0-902	7 0			
	1/4	10.012	2 +0-022	+0-005		-0-010	-0-069		
	1/2	+0-016	5 +0-016	5 +0-010	+0-009				
	3/4	0,002	-0-005	+0.001	0-004	-0.005			
	1.	0-074	-0.015	-0-050	0-010	0	0		
1-50	0		+0-021	0	+9.005	0			
	1/1	+0-008	+0.050	+0.004	+0.007	-0.009	-0-044		
	1/2	+0-016	+0.016	+0-010	+0.008	-6-008			
	3/4	~-0.003	0-006	+0.003	-0.004	-0.005			
	1	0-050	0-012	-0-041	-0-008	0	0		
1-25	0	0	+0-015	0	+0-003	8			
	1/4	+0.005	+0-015	+0-002	+0-005	-0.007			
	1/2	+0-314	+0-015	+0-008	+0-007	0-007			
	3/4	+0-006	+0-007	+ 0-005	+0-005	0-005	-0-094		
	1	- 0-04 7	-0.009	0-031	0.006	0	0		
I-0	0	0	+0.009	0	+0.002	Q	_0.010		
	1/4	+0-002	+0-011	+0.000	4-0-003	-0-005	-0-079		
	1/2	+0-009	+0.013	10-005	+0.005	-0-006	-0.020		
	3/4	+0-008	-0-008	+-0-005	+0-004	0-004	_0.020		
	1	-0-035	~-0-007		-0-005	0	0		
0-75	0	0	+0-004	0	+0-001	0	-0-067		
	- 1/4	+0-001	+0-008	+0.000	+0-002	0-002	-0-013		
	1/2	+0.003	+0-010	+-0-002	+0-003	0-003			
	3/4	+0-007	+0-007	+0-003	+0-003	0-003	-0-013		
	I		0-005	-0-015	-0-003	0	0		
0. 4 .2	0	8	+0.901	0	+0-000	þ			
	1/4	+0-000	+0-005	+0-000	+9-001	0-001			
	1/2	+0-002	+0-006	4 0-00 1	+0-001	0-002	-0-009		
	3/4	+0-004	+0.006	+0-001	+0-001	0-001	0-007		
	1	0-015	0-003	0-008	0-002	9	0		
							-		

TABLE J MOMENT CORTIGRATY FOR INDIVIDUAL WALL FAMEL, TOP FREE, BOTTOM AND VERTICAL EDGES FIXED-Cand

17

4

ę

Ŀ

۰. 2

TABLE 3 MOMENT CORPICIENTS FOR INDIVIDUAL WALL FANEL, TOP FREE, BOTTOM AND VERTICAL EDGES FIXED

(Cleases 2.1, 2.1.1, 2.2 and 2.2.2)

-0-082 -0-055 -0-071 -0-033 510-0-8 -0-028 -0-07 --0-066 ES0-0-1 -0-027 090-0-1 × a 2-4/2 0 FLEED W. 01-0-110-0--900-0---0-013 -0.014 210-0--110-0---0-005 ε • 0 o c ί ٢ 010-0+ +10-01+ +0-013 ¥, -0-018 +0.013 +0-013 +0-010 000-0-+0-010 -0-015 600·0+ +0-010 1000-+0.003T z = 4/4 FUED ^LFREE +0-001 +0.008 810-0---0.092 010-0+ ž +0.00.1 +0.008 010-0---0-01 +0.005 80 ତ 0 c 0 3 1 ſ 610-0+ +0-025 010-0+ N 100-0--0-025 +0-022 +0.027 +10-0+ 1000 +0.016 +0-003 £ +0.027+0.023 -0-022 0 - 1 010-0+ + 0.005 -0.033 -0-126 theironial moment 🐭 Al**s we**t 110-0+ +0-013 --0-021 801-0-+0-015 +0-012 -0-008 ×. ຄ ø 9 Vettical moment - M. as ί ¢ w - density of the liquid a — height af the wall b w width of the wall 1/2 3 3/4 x/a 174 o \$ 1/2 3/6 -0 đ 3/4 4 -0 3.00 **b**|4 Ξ \$-20 50 8 5 8

91

(Centimed

--0-027

-0-005

•

0

--0-012

-0-039

10-0--

10086

-

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM. EXAMINATION DEC/JAN 2024-25

Program: B.Tech. Civil Engineering (UG) Lung VII Course Code: PE-BTC-731 Course Name: Surface Hydrology Duration: 03 Hrs. Maximum Points: 100 Semester: VII

Notes:

- Attempt any five questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	CO	BL	Module
	(a)Explain water budget equation for a watershed. Discuss terms used.	10	1	2	1 .
1	(b) Explain the energy budget method of estimating evaporation from a lake.	10	1	2	2
				<u> </u>	·
2	(a) Explain depth - area - duration relationship and intensity - duration - frequency relationship.	10	. 1	4	2
	(b) A water shed has four non recording rain gauges installed to record rainfall data. The annual rainfall record for one of the year is furnished				
	Below:ABCDRain gauge stationABCDAnnual Rainfall in cm10012014080	10	1	3	2
	Assuming an error of 10% in the estimation of mean rainfall, find the required optimum number of rain gauges for this watershed				
			1	<u> </u>	·····
	(a) Explain in brief various commonly used Stream gauging techniques.	10	2	5	3
	(b) Calculate the potential evapotranspiration in the month of November	- · ·			
	for the area having details: Latitude: 28°5'N, Elevation= 235 m above				1 .
3	sea level, Saturation vapour pressure (ew)=17.55 mm of Hg, A= 1.05		2	5	2
	mm/°C, mean monthly solar radiation (Ha)= 9.50 mm of water/day.	10			2,
	mean monthly temperature = 20° C, mean relative number 70° , mean 1°		Ì		
	observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity at 2 in holgin $\frac{1}{2}$ observed sunshine nours- 91, while velocity		1		
		<u> </u>			
	(a) What is hydrograph? Explain different types of hydrograph				
	depending upon unit of time involved and their corresponding	10	2	2	4
	applications. State assumptions of a unit hydrograph.				
4	(b) The runoff data of a stream gauging station for a flood in m ⁷ /sec at				
	three hourly intervals are: 50, 50, 75, 125, 225, 290, 270, 145, 110, 90, 145 , 110, 145 , 110, 110, 110, 145 , 110,	10	2	2	4
	80, 70, 60, 55, 51, 50. The drainage area is 40 km . The duration of the		1		
L	Tamian is 5 nouis. Derive the unce nour unit hydrograph for the bush	<u> </u>	<u>t</u>		<u>-</u>

BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) /Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM. EXAMINATION DEC/JAN 2024-25

	Assume a constant base flow of 50 m ³ /sec throughout the duration.	T	T		1
		<u> </u>	_ <u></u>		
	(a) What is Hydrological forecasting? Why it is important? Explain with an example.	10	2	3	6
5	(b) Define recurrence interval or return period. A hydraulic structure is sized for a 50 year recurrence interval design discharge. What is the risk that the flow capacity will be exceeded during any future 20 years period? What is the probability that the 50 year recurrence interval peak flow rate will be exceeded in the next 50 years?	10	2	3	5
			<u> </u>	J	
	(a) Explain the procedure for hydrologic reservoir routing. Also explain prism and wedge storage in channel routing.	10	2	4	5
6	(b) The inflow hydrograph readings for a stream reach in $m^3/sec.$ at 12 hourly intervals are as: 42, 45, 88, 272, 342, 288, 240, 198, 162, 133, 110, 90, 70, 68, 61, 56, 54, 51, 45, 45, 142, 71, 142, 154, 154, 154, 155, 155				
	coefficients for the stream reach are k =36 hr. and x = 0.15. Determine the attenuation in peak flow discharge.	10	2	5	5
			1	<u> </u>	l
-	 (a)Write short notes on (Any Two): (i) Flood control measures, (ii) Drought Management, (iii) Risk-reliability and safety factor 	10	2	4	7
7	(b) For a data of maximum recorded flood of a river, the mean and standard deviation are 4200 m ³ /sec. and 1705 m ³ /sec. respectively. Using Gumbel's extreme value distribution, estimate the return period of design flood of 9550 m ³ /sec. Assume an infinite sample size. Take:	10	2	5	6
	Yn = 0.577, Sn = 1.2825.				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION/RE-EXAMINATION

DECEMBER - 2024

Duration: 3 Hr.

Semester: VII

Maximum Points: 100

Program: Civil Engineering 1000

Course Code: PE - BTC - 761

Course Name: Pavement Design and Construction

Note :

(i) **Question 1 is compulsory**

(ii) Solve any four questions out of remaining six questions

(iii) Assume suitable data if required

Q.No.	Questions	Points	Modul	BL	CO
Q.1.	Solve any four (each carries five marks)	20	· · · · ·		
а	Discuss the Classification of pavement design methods		01	02	02
b	Criteria for selection of filter material in subsurface drainage system	·····	06	02	02
с	Advantages and disadvantages of rigid pavements		03	01	02
d	Displacement equation for flexible plate and rigid plate		02	02	02
e	Enlist at least 10 types of distresses generally observed in pavements.		05 ·	01	03
Q.2.					
	Why layer system concept is developed in the design of flexible				
а	pavement. explain with sketch	08	02	02	01
	Design the flexible pavements passing through plain area for two lane undivided carriageway, the traffic is allowed to move in both direction and design life of 12 years. Total numbers of heavy vehicles in both directions for undivided lane carriageway are 1000 cvpd, if rate of growth of traffic is 7 %, the CBR value of subgrade soil is 6 % and time required for construction of road after last count is 3 years. Use IRC 37- 1984 Guideline. Also, estimate the quantity of material required for construction of 1 km long road. Refer Table - 1				
b		12	02	03	02

1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION/RE-EXAMINATION

DECEMBER - 2024

Q.3.				Í	
	Explain the laboratory procedure for conducting the CBR test. How will				
а	you apply the correction to the CBR value?	10	02	03	02
	Discuss the procedure for construction of WBM type base layer of the				
	flexible pavements. (the discussion includes definition of WBM,				
	gradation of materials, suitability of materials for the construction and				
b	construction procedure)	10	04	03	03
Q.4.			· · · · · · · · · · · · · · · · · · ·		
	State the equations for calculation of warping stress at interior, edge and				
а	corner of the rigid pavement slab due to daily variation of temperature	06	03	02	02
b	Discuss revised PRA Method for classification of subgrade soil.	07	02	02	03
	Design the tie bar in longitudinal joint of cement concrete pavement				
	having thickness 25 cm and width 3.5 m using the following				
	Density of concrete = 2400 kg/cm ³ , Allowable working stress in plain				.
	steel bar = 1250 kg/cm^2 , Permissible bond stress in concrete = 17.5				
С	kg/cm ² , Coefficient of friction = 1.2	07	03	03	03
Q.5.					
a	State the assumption of Burmister two and three layer theory	04	02	01	02
	Discuss the procedure for construction of cement concrete slab by				
b	alternate bay method.	06	04	02	03
	Design a rigid pavement using modified Westergaard's wheel load and				
	warping stress equation at edge region of the slab. The design data are				
	given in the table below.				
	1 Design wheel load 5100 kg				
	2 Tyre pressure 7 kg/cm ²				
	3 Spacing between longitudinal 5.0 m				
	joints	}			
	4 Spacing between transverse 3.5 m				
	joint				
	5 Modulus of elasticity of $3 * 10^5 \text{ kg/cm}^2$				
с	concrete	10	03	04	02

2

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

- END SEMESTER EXAMINATION/RE-EXAMINATION

DECEMBER - 2024

	6 Poisson's ratio 0.15		Ţ		1
	7 Flexural strength of concrete 45 kg/cm2		1		
	8 Modulus of subgrade reaction 15 kg/cm ³		a remaining the second second second		
	ofbase			-	
	9 Coefficient of thermal $10*10^{-6}$ per ^o C				
	expansion			j	
	Maximum difference of temperature between top and bottom fiber				
	during mid-day at the site under consideration is 14.30°C.				
Q.6.	· · · · · · · · · · · · · · · · · · ·	[[
	Explain with neat sketch, why it is necessary to provide the surface				
<u>a</u>	drainage system on either side of road.	05	06	01	03
	The Benkelman beam study were conducted on the stretch of 500 m long				
	road section and 10 sets of observations were recorded and shown in table	<i>.</i> .		6 • •	
	1. If the least count of dial gauge used for the study is 0.01 calculate the				
	rebound deflection.				
	The traffic volume study shows that the road carries a traffic of 1600 cvpd		3	ļ	
ſ	on last count and three years required for construction after last count. The				
	average temperature at the time of study is 40°c, subgrade moisture factor				
	is 1.2, $VDF = 2.5$, $LDF = 1$, rate of growth of traffic is 7 % and design life				
	is 10 years. Design the (i) Bitumenous type overlay thickness, (ii) WBM				
	type overlay thickness and (iii) Bitumenous concrete type overlay				
b	thickness	15	05	04	03
Q.7.					
	How will you repair the following types of distresses				
	(i) Longitudinal Rutting				
ล	(ii) Longitudinal cracks	10	06	02	03
	Design the Cement concrete pavement for rural road in coastel area				
	carrying a traffic volume of 110 commercial vehicles per day. The CBR				
b	value of subgrade soil in the area through which road passing is 10	10			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION/RE-EXAMINATION

 \checkmark

DECEMBER - 2024

 per IRC :SP:62-2014) = 5.0 kg/cm^3 .			
Note: modulus of subgrade reaction for 10 percent CBR value (as			
kg and tyre pressure is 7 kg/cm ² .	and a state of the		
percent. Maximum single axle load expected to pass on the road is 4500			

Q. 7 (b), Table 1

Sets of observation	D ₀	Di	Df
1	0	33	30
2	0	37	32
3	103	41	38
4	104	36	33
5	105	35	33
6	101	42	39
7	101	43	40
8	0	41	38
9	0	42	40
10	0	29	26

Q.2. (b) Table - I

Design traffic in msa	Mi	Minimum thickness of layers in mm					
	Surface	Base	Subbase				
0.50	20 mm PC or 2 coats of SD	150	T = 50, minimum thickness of 100 mm on subgrade				
		mm	of CBR less than 20 %				
0.5 - 2	20 mm PC or MS	225	T - 225, minimum thickness of 150 mm on subgrade				
·		mm	of CBR less than 20 %				
2 – 5	20 mm PC/MS/SDC over	250	T – 300/325, minimum thickness of 750 mm on				
	50 mm/75 mm BM	mm	subgrade of CBR less than 30 %				
5 - 10	20 mm BC/SDC over	250	T = 335 to 355, minimum thickness of 750 mm on				
	60 – 80 DBM	mm	subgrade of CBR less than 30 %				
10 - 15	40 mm BC over 65 - 80 DBM	250	T - 335 to 370, minimum thickness of 750 mm on				
		mm	subgrade of CBR less than 30 %				
t 5 – 20	40 mm BC over 80 - 100 DBM	250	T = 370 to 390, minimum thickness of 750 mm on				
		mm	subgrade of CBR less than 30 %				
20-30	40 mm BC over 100 - 115	250	T - 390 to 405, minimum thickness of 750 mm on				
	DBM	mm	subgrade of CBR less than 30 %				

FIG 10.10 Overlay thickness design curves (IRC: 81–1997)

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

Program: B.Tech Civil Engineering Lun VII

Course Code: PE-BTC726

Duration: 3 hours

Maximum Points:100

Course Name: Prestressed concrete

Semester:VII

Notes : Attempt any 5 main questions out of 7; Assume any missing data and state the same clearly; Illustrate your answers with neat sketches, Use of IS 1343 is allowed

Q.No.	Questions	Points	- с ө-	BL	Modu No.
1.a)	Discuss the advantages and disadvantages of prestressed concrete over reinforced concrete and steel structures	10	1	3	01
1.b)	A prestressed concrete beam is of size $500 \text{ mm} \times 900 \text{ mm}$. The beam is simply supported on a span of 12 m. It is subjected to a central concentrated load of 1500 kN and a UDL of 10 kN/m. A parabolice tendon is provided at an eccentricity of 100 mm below the centroidal axis and 50 mm below the centroidal axis at the ends. Compute the extreme stresses at midspan, quarter span and supports of the beam	. 10	1	1,2	01
2.a)	A prestressed concrete beam is of T section having flange width and thickness 750mm and 250mm respectively. The total depth is 1700mm. Thickness of web is 200mm. The area of prestressing steel is 1400mm ² . The prestressing steel is provided at a distance of 100mm from the soffit of the beam. If fck = 40MPa and fpu = 1700MPa, Calculate the ultimate flexural strength using IS CODE	10	3,5	3	03
2.b)	Design the shear reinforcement <i>at quarter span</i> for a simply supported beam of rectangular eross section 350mmx700mm and span 12m. It carries a live load UDL of 15kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 200mm; fck = 40MPa Effective prestress in cable = 1000MPa Characteristic strength of PT steel = 1600MPa Use Fe500 grade steel for reinforcement.	10	3,5	4	03
3.a)	A simply supported post tensioned beam of span 18m with 2 cables having a cross section of 300mm X 1000mm is successively tensioned from a single end in the order of cables1-2.ProfileEccentricity at midspanCable 1Parabolic200mm (below CG)150mm (above CG)Cable 2Straight450mm (below CG)450mm (below CG)	15	2,5	3	02

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

			····	1	
	Each cable has a cross section area of 300mm^2 and an initial tension of 1250MPa and M45 is used for the beam. Co-efficient for friction = 0.5; co-efficient for wave effect = $0.0014/\text{m}$. Age of concrete at transfer of prestress = 28 days. Anchorage slip = 2.5 mm. Es = 210 kN/mm ² , Calculate the % losses due to elastic shortening, shrinkage (at 100days), friction and anchorage slip.				
3.b)	Explain the reason why early attempts at prestressing failed and how it was overcome?	5	1,3	2	02
4.	Design a Type 1 post tensioned bonded girder (simply supported) for- the following data : Effective span = 17m; Live load = 22kN/m; fck = 40MPa; fci = 30MPa; Es = 210kN/mm ² Assumed loss % = 35% Use 8mmø strands for cables. The characteristic strength of cables is 1600MPa. Calculate the size of section required, prestressing force, eccentricity with safe cable zone. Draw neat sketch of the cable profile	20	3,5	4	05
5.a)	The prestressed concrete beam consists of a precast beam $(300\times800\text{mm})$ and cast in situ slab $(1500\times125\text{mm})$. If the differential shrinkage is 1.35×10^{-4} find the shrinkage stresses at extreme fibres of slab and beam and sketch its variation across the depth. Use M35 grade of concrete.	08	4	3	06
5.b)	A 15m span simply supported composite beam consists of 250mmX750mm precast stem and a cast-in-situ flange of 900mmX200mm. The stem is a post tensioned unit subjected to a prestressing force of 1000kN. The tendons are provided at 150mm from the soffit of stem. The beam has to support a live load of 10kN/m. Determine the resultant stress distribution in the beam if the beam is unpropped	12	4	2	06
6.a)	 i) Derive the value of deflection for a simply supported beam prestressed with parabolic cablehaving eccentricity "e1" at supports (above CG) and having eccentricity "e2" at midspan (below CG). ii) A simply supported prestressed beam of cross section 300mmX600mm and span 8m has a straight profile of cable with eccentricity of 200mm below CG and a parabolic profile concentric at supports and having e=100mm at mid span. It carries a live load of 8kN/m. The area of each cable is 400mm² and it is initially tensioned to 1350N/mm². % losses = 25% Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 	10	1	3	03

Martine a selection and select

.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

6.b)	The end block of a post-tensioned beam has two anchorages with 300 mm diameter bearing plates located at 350mm from top and bottom respectively. The size of end block is 350x1050mm. An initial pre-stressing force of 800 kN is applied to each anchorage. Design the end zone reinforcement. Use Fe500	10	3,5	3,5	04
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1500kN. Locate the pressure line due to prestressing force and a UDL of 40kN/m on full span	20	4	4	07

BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION-DEC-2024 SET-II

B. Ful Program: Civil Engineering Sum

Course Code: PE-BTC-743

Course Name: Industrial Wastewater Treatment

Notes:

- 1. Q.1 is compulsory and attempt any 4 out of remaining
- 2. Illustrate answer with neat sketches wherever required.

Q.No.			Ques	tions				Points	BL	со	Module No
].	 Write a short note on : (Any four) 1. Strength Reduction of Industrial waste. 2. Moving Bed Biofilm Reactor 3. Treatability Study 4. Domestic Wastewater Vs Industrial wastewater 5. Treatment Flow sheet for Tannery Industry 6. Equalization of Industrial waste. 								1	1-3	1-7
2	 A. Discuss the effluent disp B. Discuss the has population 240 liters period of days B. Discuss the has population 240 liters period of days discrete to against a contract of the servoir to agai	Minamat osal on v Membra on of 2 1 r person table. be prov stant rate the pur pumpir 9 pm. 004	a Traged vatercou ne consi akh and per day. Find ou vided fo e of pum nping is ng is don 4108	ly which rses. truction it has to The hou t the ca r baland ping: done for e from 6 810 12	caused and cha be sup urly vari pacity of ang the all 24 h am to 1	by illega racterist plied at ation in of the d variabl ours. 1 am and 161020	I industria ics. A city the rate of demand is listribution e demand d then 2 20 to 24 70	10+10	2	1-3	1

Duration: 3 hrs. **Maximum Points: 100** Semester: VII

3. Make suitable assumptions where necessary and state them clearly.

3

A

1.

in neutralization tank.

BOD5@20°C =2 mg/l

along with examples.

River

Q=0.6m3/s

T=20 °C

DO=8mg/l

BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

	B. Discuss the stabilization, dewatering and disposal methods of industrial sludge in detail.	+10	2	1,2	3,5
5	 A. Discuss the Nanofiltration, Ultrafiltration, Microfiltration, Electrodialysis and Reverse osmosis with their specifications. B. What do you mean by Sequencing Batch Reactor? Explain the basic treatment processes in SBR along with advantages and disadvantages. 	10 + 10	3	2,4	4
6	 A. Discuss the working principle, advantages and disadvantages of Rotating Biological Contactors (RBC) for industrial wastewater treatment. B. Define: Phytoremediation. Explain the various processes in Phytoremediation. C. Define: Constructed wetland. Enlist the plants used in constructed wetland to treat effluents. 	10 +06 +04	2	2,4	4
7	 A. Discuss the manufacturing process, wastewater sources, wastewater characteristics, and treatment flowsheet for traditional sugarcane-based sugar industry in detail. B. "One-fifth of water pollution comes from textile dyes. But a shellfish-inspired solution could clean it up - CNN dated 23 june, 2023. Discuss how the textile industry manufacture products with wastewater of specific characteristics, responsible for water pollution and possible treatment options currently employed by industry to tackle dyes issues 	10+ 10	2	1-3	6

Percent Saturation of Dissolved Oxygen

1

)

Ł

Determine water temperature in degrees C and find the value on the temperature scale.

• F to C conversion: {(F - 32) x 5] ÷ 9

Determine dissolved oxygen (DO) and find the value on the lower scale (Note: you result can be in mg/L or ppm).

Using a straight edge (ruler, piece of paper etc.) draw a line from the temperature value to the dissolved oxygen value. The point at which the line crosses the middle (saturation scale) is the percent saturation of oxygen.

Example: Determine the % saturation of dissolved oxygen in a stream given the ollowing information: Temperature (13 C); DO (7.6 mg/L). Using the monogram ibove your answer would be about 72 - 75 depending on your line. Another method is o divide 7.6 by 10.6, which is the 100% solubility at 13 C, then multiply by 100. Your inswer would be 71.7.

>\$€	23.75	74-60	<u>د 60</u>
Excelent	Good	Fair	Pror

BharatiyaVidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING (An Autonomous Institution Affiliated to University of Mumbai) Munshi Nagar Andheri (W) Mumbai 400058 End Semester Exam/Reexam

December 2024/January 2025-

Max. Marks: 50+50 (project+report)Duration: 2 HrsClass: B. Tech (a) & Semester: VIISemester: VIIName of the Course: Entrepreneurship Innovation and Design thinking Program: B. TechCourse Code: OE BTC 712

Instructions:

- Attempt any Five questions out of Seven
- Draw neat sketches/diagrams wherever required in the answer sheet and upload
- Assume suitable data if necessary and state them clearly
- Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and Performance Indicators

	Answer the questions	Marks	CO	BL
Q1	Answer the following questions based on the case study on Ather Energy article:	(10)	1-2	4
Q(a)	Analyze and evaluate Ather's journey from a 2 person to 350+ strong company and path of finally having a viable product ready for market launch	(05)	2,3	3
Q(b)	Discuss opportunities and challenges for Ather Energy. How can Ather Energy ensure it's sustainability	(05)	1,2	3
Q2	Based on The case study of organic wellness is shared to you. Answer the questions based on the study.	(10)	2,3	4
Q(a)	Analyze the long term viability of various strategies adopted by Guptaa to keep farmers interested in agriculture as a profession.	(2.5)		
Q(b)	Briefly discuss the marketing tactics employed by Guptaa and how it helped to generate customers	(2.5)	2,3	3
Q(c)	Critically analyze the social media campaign led by Guptaa. With the organic market expanding, can he compete using zero sales force? Recommend a strategic marketing plan for Gupta considering hypothetical market of US \$50000.	(05)	4	3
Q (3)	Explain in minimum 350-400 words what are the key ingredients for a start up to be successful according to the book zero to one.	(10)	2,3	3

Q(4)	Explain the major steps for design thinking and how to go about these steps. Which according to you is most important and why?	(10)	2,3,4	3
Q(5)	Explain in short	(10)	2,3	4
(i)	What are assets, liabilities and equity and where are they used ?Give an equation linking them	(05)		
(ii)	Consider two companies (a) Screw manufacturer (b) nanoparticle manufacturing for paints. Which of the two is a start up? Which of the two is most likely to be invested by a bank loan and which one will be invested by venture capitalist and why?	(05)		

ALL THE BEST

.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination

July

Brech

December 2024

Program: Civil Engineering Jum VIL Course Code: PC - BTC713

Course Name: Disaster Management & Preparedness Instructions:

- 1. Question no.1 is compulsory.
- 2. Solve any FOUR from the remaining SIX questions.

بالمارية والمستر المتكر المصارفين والرار

- 3. Write answer to each question on a new page.
- 4. Answers to be accompanied with appropriate sketches, tables, and charts wherever necessary or required

Q.No.	Question	Points	со	BL
1	a. Define hazard and vulnerability in the context of disasters and explain how they contribute to the risk. (4)	20	1,2,3,4,5	1
	b. Discuss the role of climate change in increasing the frequency of urban disasters. (3)			2
	c. Define the disaster management cycle and briefly describe its four main phases with examples. (6)			1
	d. List the key environmental modifications caused by urbanization that increase disaster vulnerability, with brief examples, (4)	/ 		1
	e. Define the terms Disaster Response and Disaster Mitigation, Provide one example of each. (3)	, ,		1
2	a. Classify any two natural disasters and describe their causes and impacts with suitable examples. Include recent case studies to support your answer. (10)	20	1,2,3	3
	b. Explain in brief the moving agenda of Global disaster risk reduction (DRR). (5)	· · ·		3
· · · · · · · · · · · · · · · · · · ·	c. Discuss the formation and the structure of National Disaster management Authority (NDMA) in India. (5)		1	3
3	Develop a comprehensive disaster management plan for floods caused by heavy rainfall in a study area of your choice, integrating findings from rainfall trend and pattern analysis	20	3,4,5	3
	 Based on your analysis, design a plan detailing specific actions for each phase of disaster management: Mitigation, Preparedness, Response, and Recovery, (10) 			· .
	 Identify and explain how technologies such as GIS, remote sensing, or others can be utilized in your plan. (5) 			

Page 1 of 2

Duration: 3 hours Maximum Points: 100 Semester: VII

R. Report and S.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination

December 2024

	3.	Evaluate the strengths and limitations of your disaster		· · · · · · · · · · · · · · · · · · ·		
L		management plan. (5)				
4	a.	Discuss the earthquake hazard and vulnerability profile of India.	20	345		,
		focusing on its mountain regions. (4)		5,7,5		. :
	b.	Highlight the challenges posed by ecological fragility for			2	
		earthquake hazards and provide recommendations for disaster				
		management strategies. (4)				
1	C.	Analyze the global and national disaster trends and discuss their			3	
		links to climate change. (8)				
ł	d.	Highlight the specific challenges faced by urban areas in			3	
L		managing disasters. (4)			- and a second	
5	a.	Analyze the impact of construction work of metro rail line in	<u> </u>	35	3	-
		Mumbai city on disaster vulnerability. Discuss how sustainable			5	
		methods can address these vulnerabilities while ensuring				
į		environmental protection. (8)				
	b.	Explain in detail how hazard mapping tool can be used for			3	
		analyzing a wildfire. (12)				
6	a.	Differentiate between disaster prevention and disaster mitigation	20	235	2	-
		with examples. (4)	~~	2,5,5	-	
	b,	Identify two psycho-social issues that arise after a disaster and			3	
		suggest one measure to address each. (3)				1
	с.	Differentiate between structural and non-structural measures in			1	ļ
		disaster mitigation, providing two examples of each. (6)				
	d.	Explain how land use changes can affect the vulnerability of			2	
		communities to disasters, using a relevant case study. (4)				
	e.	State the process of a risk analysis as per IS 15656: 2006. (3)			1	
7	a.	Explain the terms exposure and vulnerability in the context of	20	3,4,5	2	1
	•	natural disasters and explain, with proper example, how they are				
		related. (4)				ļ
	b.	Explain how disasters impact the environment and economy,			1	1
		providing one example of each. (3)	• <i>.</i> .		• • •	
	C.	Explain the importance of early warning systems in disaster			3	
		management. Discuss how they contribute to reducing risk and				
		improving preparedness, using real-world examples, (6)				í
	d.	Suggest two sustainable and environmentally friendly recovery			3	
		methods after a flood. How can these methods help prevent future				
		disasters? (4)			1	ĺ
	e.	State different methods of qualitative and quantitative risk				
<u> </u>		assessment. (3)				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

9/1424

END SEM/RE-EXAM. EXAMINATION DEC/JAN 2024-25

Im Duration: 03 Hrs. Program: B.Tech. Civil/Mechanical/Electrical Engineering (UG) Maximum Points: 100

Course Code: OE-BTC-714

Semester: VII

Course Name: Engineering System and Development

Notes:

- Attempt any five questions. .
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	со	BL	Module No.
	(a)Discuss: role of Engineers in Society, Basics of Engineering Profession and Role of Engineering services in economic development.	10	1	2	1
1	(b)Explain the role of following sectors in national development: (i) Energy, (ii)Agriculture, (iii)Industry; and (iv)Infrastructure	10	2	3	1
		· .	1		
	(a)Explain various steps in engineering processes with an example and case study.	10	1	2	2
2	(b) You are one of the team members of an engineering team for construction and development of an Airport for connectivity. Discuss Engineering functions and expected essential roles of team members.	10	3	4	2
3	(a) Define: Sustainable Development. Discuss elements of sustainability and justify how it is interdisciplinary.	10	1	2	2
	(b) Differentiate between Equity and Equality. Discuss Sustainable	10	2	3	2
	development and evolution growth	d. <u></u>		• • <u>-</u>	
	(a) Explain in brief ecosystem-based decision making model and importance of integrated decision-making in development.	10	1	2	3
4	(b) What is Human Development Index (HDI)? What it measures? Explain how HDI is calculated using four indicators.	10	2	4	3
	(a) Write short notes on: National Institution for Transforming India (NITI-Aayog). Express your views on HRD, Skill Development & Employment and Rural Development.	10	2	2	4
5	(b)What is development engineering? Discuss its role in development of community services, water pipe networking, education and health services	10	3	5	4
6	(a)What is the role of manufacturing sector with respect to local and clobal scenario? Discuss the effect of seasonal variation on	10	2	4	5

SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM. EXAMINATION DEC/JAN 2024-25

-		development.		<u> </u>	T	Γ
		(b)What is your opinion on: importance of digitization and communication in development? Explain with case study.	10	1	2	5
		(a)Discuss the role of good governance in overall development of the society.	10	2	3	6
	(b)What the word paradigm indicates? Explain classical model of development and growth stage theory.	10	3	5	- 6	
		****			L	

Page 2 of 2

Bruch Guly-LunvII

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

4/12/24

I

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Examination December - 2024

Gvil Max. Marks: 100 Class: B. Tech. Sun VIL Semester: VII Name of the Course: Advanced Structural Analysis

Duration: 3Hours Program: Civil Engineering Course Code : PEC- BTC721

Instructions:

- · Answer to any five questions
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Question		Max. Marks	Course outcome	Module No.
Q1 (a)	Analyse the beam shown in figure by Matrix Stiffness method and draw BMD & deflected shape.	10	1,6	2
	4 1m, 3m 7 6m I I			
Q1 (b)	Analyse the rigid jointed frame shown in Figure by flexibility method and draw BMD and deflected shape. Note that D supported on elastic foundation, which allows partial rotation and no vertical and horizontal displacements. El = 2×10^4 KN-m ² and Ky = 10^4 KN-m/rad. 20 Ku fm k_r k_r k_r k_r k_r k_r k_r	10	2	4

£,

·				
Q7(a)	Using plastic analysis, determine the load factor for the frame loaded as shown in figure. The Plastic Moment capacity of each member in KN-m is indicated in the figure. $3m$ 45^{4} 120 100 $3m$ $5m$ 120 100 $3m$ $5m$ 120 100 $3m$ $5m$ $5m$ $5m$ $5m$ $5m$ $5m$ $5m$ 5	16	5	7
Q7(b)	 i) Explain the need of approximate methods of Analysis (ii) For the beam shown in figure, calculate the stiffness matrix w.r.t the co-ordinates shown in figure 	2 2	3 1	6 1

.

4

•

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

END SEM/RE-EXAMINATION DEC/JAN 2024-25-B. Tech Civil Sem Duration: 3hr

Civil Engineering Program:

Course Code: PE-BTC751

Maximum Points: 100

Course Name: Engineering Risk and Uncertainty

Semester: VII

TIMA

Instructions:

- 1. Question no. 1 is compulsory.
- 2. Attempt any 4 questions out of remaining 6 questions
- 3. Neat diagrams must be drawn wherever necessary.
- 4. Assume-Suitable data if necessary and state it clearly.

Q. No.	Questions	Points	СО	BL	Mod
1	It is proposed to construct a bridge across a perennial river. (i) Discuss the steps in the risk management process for the construction of a bridge along with flow chart.				
	 (ii) List the different risks which are likely to occur during the life cycle of a project. (iii) Brief the consequence and mitigation measures 	20	CO	BL3	1,2 &3
	 for the different risks. (iv) Discuss the contents of a typical risk register for the bridge construction project. 				
2(a)	Discuss the role of insurance in the context of risk management.	10 .	CO1	BL2	2
2(b)	Explain in depth the process of risk assessment along with process flow chart as per IS 15883 (Part 8): 2015.	6	CO1	BL2	3
2(c)	Brief about the need of development of Hybrid annuity model	4	C01	BL2	7_
3(a)	A company has received quotes for its recent advertisement for the purchase of a sophisticated milling machine. The data are as per the estimate in today's rupee value.		CO1	BL3	-2&3
	Machine X	Machine	Y		
	Purchase price (Rs.) 15,00,000	20,00,00	0		
	Machine life (years)7Salvage value at the end of2,00,000machine life (Rs.)7	3,00,000			
	Annual operating & 3,00,000 2,50,000 maintenance cost (Rs.)				
	Assuming an average annual inflation of 5% for the next five based on the present worth method. Interest rate is 15% com	years, dete	ermine th	e best n	nachine

							······	······
3(b)	Discuss RPN and process.	its signif	icance in risk ma	inagement	4	CO1	BL1	. 3
3(c)	Discuss the typical construction project	financial ri ts.	sks in the context o	f highway	6	CO1	BL2	7
4(a)	Discuss the variou analysis	is techniqu	es used for quanti	tative risk	7	coi	BL2	2
4(b)	Discuss the crisis features in the proc	manageme ess of risk 1	ent plan and brief management.	about its	6	CO1	BL2	7
	The details of the f below.	easibility re	eport of a project are	e as shown	7	COT	BL3	4
4(c)	Check the feasibilit = Rs. 50,00,000 Li Modernizing cost a life = Rs. 5,00,000	ty of the pro fe of the pro at the end of	bject based on presen bject = 20 years. And f the 10th year = Rs.	nt worth me nual equiva 20,00,000	thod, usin lent revent Salvage va	g i = 20% ue = Rs. 1 lue at the	. Initial 5,00,00 end of	outlay 0 project
5(a)	Discuss the commo case of the toll road	on causes fo d constructi	or the time and cost on projects.	overruns in	6	CO1	BL1	7
	A glass factory th substantial backlog considering three c	at specializing and for the sources of a	zes in crystal is de his the firm's mana ction:	veloping a agement is	10	COI	BL3	5
5(b)	facilities (S3). The medium or high. B 0.40. A cost analys	contracting correct cho y consensu is reveals th	(S1), to begin overta sice depend largely us s, management rank the effect upon the pr	ime product ipon the fut s the respec cofits. This i	tion (S2), a ure deman tive proba is shown a	nd to cor d, which bilities as s below	may be 0.10, 0	ew low, .50 and
	Demand	Probability		Course of	faction	<u> </u>		_
			SI (Subcontracting)	S2 (Begin	in	S3 (Cons Equilities	truct	
			in thousands of	thousands	of Rs.	thousand	s of Rs.	
	Low(L)	0.1	10	-20		-150		
	Medium(M)	0.5	50	60		20		-
	High(H)	0.4	50	100		200		-
	Draw decision tree value.	diagram. I	ndicate the most pre	ferred decis	ion and co	rrespond	ing expe	ected
5(c)	Explain failure mo	de effect a	nalysis (FMEA)		4	CO1	BL1	3
	A vitrified tile com	pany keeps	a stock of popular st	ock of tile.	9	CO1	BL3	6
б(а)	Previous experienc below:	e shows the	e daily demand for the	he item with	associate	d probabi	lities as	given
	Daily	demand (n	umber) 0 10) 20	30 4	0 50		
	Proba	bility	0.01 0.2	20 0.15	0.50 0.	12 0.0	2	
	10 days. Also estin	nate the dai	y demand distributi	69, 19 and on.	49, simula	ite the de	mand to	or next
6(b)	Discuss in brief abo PPP Model in the c	out advanta context of ri	ges of HAM compar sk management.	red to BOT	6	CO3	BL2	7
6(c)	A manufacturing	firm produ	ices a single prod	uct whose				
	seming price is ₹ 1.	SU per unit	and the variable costs of the	sis per unit		-		
	estimated as ₹ 5.00	1,000. Find :	the breakeven point	in units. in	5	CO1	BL3	4
	₹ and as a % capac	ity if the fir	m has an estimated	capacity of	:			· .
ł.	-			-	• • •	1		-

٩.

: `

	M/S Krishna Castings Ltd. is planning to r furnace.	eplace its anneal	ling	10	CO1	BL3	5
	It has received tenders from three differen	it original manuf	factur	rers of ann	ealing fu	imace.	The
	details are as follows:			· · · · · · · · · · · · · · · · · · ·			
7(0)			Manu	ıfacturer			
<i>(a)</i>		1		2	3		
	Initial cost (Rs.)	80,00,000	70,0	0,000	90,00,0	00	
	Life (years)	12		12	12		
	Annual operation and maintenance cost	8,00,000	9,00	0,000	8,50,00	0	
	Salvage value after 12 years	5,00,000	4,00	0.000	7.00.00	00	
	Which is the best alternative based on futu	ire worth metho	dati	= 20%?			
7(b)	You are carrying out construction work o	f Cement Concr	rete			1	[
	road in a corporation area. List different r	isks which likely	y to	10	CO1	BI3	1,2 8
	occur in such project during all phases o	f the project alo	ong	10			3
	with their mitigation measures.						

۲...

. . . .

.

. .

÷

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

January 2025

Re TERM END EXAMINATION DECEMBER 2024

Program: B. Tech (Civil) Lenn VII

Course Code: PC-BTC701

Duration: 3 Hr Maximum Points: 100

Course Name: Design of concrete structure

Semester: VII

2111

Notes: Question no. 1 compulsory Solve any - A questions out of remaining question.

Q.No.	Questions	Points	СО	BL	Modu —No.
1 (a)	Explain different types of joints provided in water tank construction with proper sketches	05	CO1	02	06
1 (b)	Explain difference between structural behavior of cantilever and counterfort retaining wall.	05	CO1	02	05
1(c)	Why Ductile detailing, as outlined in IS 13920:2016, is crucial even when a structure is designed using IS 1893, which considers seismic loads. Explain in detail	10	CO3	02	04
2(a)	Design a staircase block dimensions for dog legged staircase case to be provided for floor to floor height of 3.15 M. Design flight of dog legged staircase from floor slab to mid landing slab The Live load on slab is 5.0 kn/m2, floor finish is 1.0 kn/m2 in addition to self-weight of slab. Use M20 concrete and Fe 415 steel. Draw a section to the scale showing reinforcement details.	15	CO1/CO2/ CO3	03	01
2(b)	What is the meaning of ductile detailing and where it is mandatory as per IS codes	05	CO3	03	04
3	For a cantilever retaining wall retaining soil backfill with surcharge of 40 Kn/m2, of height 4.0 m above toe side ground floor. The good soil strata is available at depth of 1.25 m with SBC of soil as 160 kn/m ² . The angle of shearing resistance for soil is 30 ⁰ , Unit weight of soil is 16 Kn/m ³ Coefficient of friction between soil and concrete is 0.5. Use M20 concrete and Fe 415 steel. Perform stability checks. Design Heel slab only. Draw a section to the scale showing reinforcement details.	20	CO1/CO2/ CO3	03	05

۰.

 \mathbf{x}_{i}^{\prime}

SARDAR PATEL COLLEGE OF ENGINEERING

sa

2025

Re Janyay TERMEND EXAMINATION DECEMBER 2024

4(a)	Design interior panel of flat slab with drop, of c/c distance between columns 7.0 m in both directions. Use floor finish load as 1.0 Kn/m ² and live load 4.0 Kn/m ² .size of column 450 mm x 450 mm. Use M40 concrete and Fe 415 steel. Use direct design method Design for moments, shear check required. Draw reinforcement in plan clearly marking bottom and top reinforcement	17	CO1/CO2/ CO3	03	02
4(b)	Explain why flat slabs are not provided in high seismic zones	03	CO1	Ö2	<u>0</u> 2
5(a)	For the slab arrangement shown, calculate final design moments after balancing. Slab is subjected to floor finish load as 1.0 Kn/m ² and live load 2.50 Kn/m ² . Design reinforcement. Use M20 grade of concrete and Fe 415 steel. Draw a section AA $4\cdot 0 m - 6m - 7$ $5\cdot 3 m - 5\cdot 3 m $	12	CO1/CO3	03	03
5(b)	Design circular water tank with flexible base joint for 550,000 liters resting on ground and open at top. Use M30 grade concrete and Fe 415 grade steel	08	CO1/CO3	03	06
6(a)	Design circular water tank with rigid fixed joint at base for height of tank 7.0 m and diameter of tank 15 m resting on ground and open at top. Use M30 grade concrete and Fe 415 grade steel. Use IS 3370 code coefficients for moment and shear calculations. Draw sectional elevations showing reinforcement details.	14	CO1/CO2/ CO3	03	07

Pg2

•~

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

January 2025

Re TERM END EXAMINATION DECEMBER 2024

6(b)	Design axially loaded column to carry 1500 Kn load. Effective height of column 3.2 M . Use M 20 grade of concrete and Fe 415 reinforcement. Use LSM for design. Draw section and elevation showing reinforcement if column is required to satisfy ductile detailing as per IS 13920	06	CO1/CO3	03	04
7	Design rectangular water tank resting on ground open at top of size 4.50 m x 6.00 m in plan and height 3.5 m. Free board is 150 mm using approximate analysis. Calculate the reinforcement using M 30 concrete and Fe 415 steel. Draw reinforcement in plan and also in sectional elevation.	20	CO1/CO2/ CO3	03	07

ſg3

Free Standard provided by BIS via BSB Edge Private Limited to Sourav Dutta - Kolkata(cena22ster@gmail.com) 136.232.70.162 [for non-commercial use only].

IS 3370 (Part 4/Sec 3) : 2021

. -

-

4

- -

3,

.

Table 5	Ring	Tension	Coefficients	for Case	2 Arrangement

112704	-		Coeffic	ients at Poin	t (<i>see</i> Note	s f and 2 at	the end of Ta	ible 5A)		
ועליא	0.0 <i>H</i>	0.1 <i>H</i>	0 2 <i>H</i>	0.3 <i>H</i>	0.4H	0.5H	0.6 <i>H</i>	0.7H	0.8H	0.9H
0.4	+0.582	+0.505	+0.431	+0 353	+0.277	+0.206	+0145	<u>+0.092</u>	+0.046	+0.013
	+1.052	+0.921	+0.796	+0.669	+0.542	+0,415	+0.289	+0 179	+0.089	+0.024
1.2	+1.218	+1.078		+0:808	+0.665	+0.519	+0 378	+0.246	+0,127	+0.034
16	+1 257	+1.141	+1.009	÷0.881	+0.742	-0 500	+0.449	+0.294	+0.153	+0.045
2.0	+1.253	+1.144	÷1.041	+0.929	+0.806	+0,667	+0.514	+0.345	+0 186	+0.055
3,0	+1.160	+1.112	+1.061	+0.998	+0912	+0,796	+0.646	+0.459	+0 258	+0 081
4.0	+1 085	+1 073	-1 057	+1 029	+0 977		+0.745	+0 53	+0 322	-2.105
5.0	+1.037	+1.044	+1.047	+1.042	+1.015	+(),949	+0.825	+0 529	-0.379	+0128
6.0	+1 010	+1 024	+1 038	+1.045	+1 1134	+17,986	+0 879	+0.594	+0.430	+0 1 49
8.0	+0.989	+1,005	±€022	+1 036	+1 044	+926	+0.953	+0.788	+0 519	
10,0	- 0.989	+0.998	÷1.010	+1.023	+1.039	+1.040	+0.996	+0.859	+0.591	-0.226
12.0	+0.994	+0,997	+1.003	+1.014	+1 031	÷i 043	+1.022	+0 911	+0.652	+0 262
140	+0.997	0 998	+1.000	+1.007	÷1.022	+1.040	+1,035	+0.949	+0,705	+0 294
16.0	+1.000	0. 99 9	+0,999	+1.003	+1.015	+1 032	+1.040	+0.975	+0.750	+0 321

(Table 1, Clauses 3.1 and 3.1.6)

Table 5A Supplementary Ring Tension Coefficients for Case 2 Arrangement

(Tables 1 and 5. Clauses 3.1 and 3.1.6)

112/04		Coefficie	nts at Point (see Notes	1 and 2)	
n-/D1	0 75H	0.80H	0 85 <i>H</i>) 90 <i>H</i>	0,95H
20	+0.949	-0.825	-(+629	+0 379	+0.128
24	+0.986	÷0.879	+U 694	-+0 +3(1	+0 149
32	+1 026	+0.953	+{1.788	-0.51+	+0 189
40	+1.040	+0.996	+(+859	+0 59	+0 226
48	+1.043	+1.022	+0.911	+0 65.3	+0.262
56	-1.040	+1 035	, 1 949	-0 70 ,5	+0 294

NOTES

I Positive sign indicates tension.

2 The point, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

Free Standard provided by BIS via BSB Edge Private Limited to Sourav Dutta - Kolkata(cena22ster@gmail.com) 136.232.70.162 [for non-commercial use only].

IS 3370 (Part 4/Sec 3) : 2021

Table 6 Moment Coefficients for Case 2 Arrangement

									_	
HF/Dt	ļ		Coeff	icients at Po	int (see Not	es 1 and 2 a	the end of	fable 6A)		<u> </u>
	0_1H	0.2 <i>H</i>	0.3H	0.4 <i>H</i>	0 <i>.5H</i>	0.6H	0.7 <i>H</i>	0.8H	0.9H	L.OH
0.4	002.3	009.3	022 7	- 043 9	- 071 0	101 8	- 145 5	200.0	259 %	.331.0
0.8	.000 0	000 6	002 5	- 008 3	018 5	036 2	059.4	- 091 7	132 5	- 183 5
1.2	+.000 8	+.002 6	+.003 7	+.002.9	000.9	008 9	022.7	046.8	- 081 -	- 17.8
1.6	÷.001 I	+ 003 6	+.006.2	+ 007 7	+ 006 8	+.001.1	009 3	- 026 7	- 052 0	- 287.5
20	÷.001 0	+.003.6	.006-6	+.008 8	+.008 9	÷.005 9	001 3	0167	038 C	- 071 9
3.0	000 7	+.002 6	+.005 1	+.007.4	÷ 009 1	+ 008 3	- 004 2	-005 3	022 .	- 048 3
4.0	÷.000 4	÷.001.5	+.003 3	+ 005 2	+ 006 8	+ 007 5	005 3	001 3	014 :	- 036 5
5.0	000 2	+.600 8	+.001 9	+.003 5	+ 0405 1	+.006 1	005 2	+ 000 7	010 :	- 079 3
6.0	÷.000 I	+.000 4	+.0011	+.002.2	+.003.6	+.004 9	004 8	+.001 7	007 1	- 024 7
8.0	0 000	1 000 +	+.000 3	+ 000 8	+001.8	+0031	003.8	+.002.4	004 Ú	-0184
100	0000	000 1	000 0	+ 000 2	+ 006 9	+.002.1	+ 003 0	÷.002.6	002 11	- (1] 4 7
12.0	0000	.000 0	- 000 1	.000.0	+:000.4	+.001.4	÷.002.4	+ 002.2	+0010	- 012 3
14.0	000 D	.000 0	.000 0	0000	+ 000 2	+.0010	+.001 8	+,002 1	- 000 **	010.5
16.0	000.0	.000.0	.000 0	000 1	+.0001	+.000 6	+.001 2	+.002 0	000 5	0091

(*Table* 1, *Clauses* 3.1 and 3.1.6)

Table 6A Supplementary Moment Coefficients for Case 2 Arrangement

(Tables 1 and 6, Clauses 3.1 and 3.1.6)

HF/D+		Coeffici	ents at Point (see Note	s 1 and 2)	
	0.80H	0 85 <i>H</i>	0.90H) 95 <i>H</i>	1004
20	+ 901 5	+0013	+.000 2	- 002 4	- 007 1
24	+.001 2	+.001.2	+.000.4	- 001 8	-0061
32	+.000 8	+,000 9	+.000.6	~ 001.0	- 004 5
40	+.000 5	+.000 7	+.000 7	- 000 5	
18	÷.000-4	000 6	÷ 946 6	- 060 3	005 7
56	+.000 2	+.000 4	+.000 5	- 000 1	00.5 1

NOTES

I Positi vesign indicates tension in the outside

2 The project, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

.

₽Į#	#/#	·	y == 0	,	= \$/4	• و ا	= \$/2
		.́ М.	M _e	M	M,	М.	M.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1.75	0	0	+0-025	0	+0-907	0	-0-050
	1/4	+0.012	+0.022	+0-005	+0-008	0.010	-0-052
	1/2	+0-016	+0.015	+0-010	+0-009	-0.009	-0-016
	3/4	-0-002	-0.005	+0-001	~0-004	0.005	-0-027
	I	0-074	-0.015	-0-050	-0-010	0	0
1-50	0	0	+0-021	0	+ 0-005	0	-0-040
	1/4	+ 9-008	+0-020	+0.004	+0.007	-0.009	-0.044
	1/2	+0-016	+0.016	+0.010	+0-008	0-008	0-042
	3/4	-0-003	0.006	+0.003	0-004	-0-005	-0-025
	I	-0-060	-0.012	-0-041	-0-008	0	0
1-25	0	0	+0.015	Ø	+0.003	0	-0-029
	1/4	+0-005	+0-015	+0.002	+0.005	-0-007	0-034
	1/2	+0-014	+0-015	+0-008	+0.001	0:007	-0-057
	3/4	+0.006	+0.007	+ 0-005	+ 0-005	-0.005	-0-024
	1	-0-047	-0.003	0-031	0-006	0	0
1-0	0	0	+0.009	D	+ 0.002	0	-0-018
	3/4	+0-002	+0.011	+0-000	+0-003	-0-005	-0-023
	1/2	+0-009	+0-013	+ 0.005	+0-005	-0.005	-0-029
	3/4	+0-008	-0.008	+0-005	+0-004	-0.004	~0-020
	1	-0-035	-0.007	-0-022	-0-005	0	0
0-75	0	0	+0-004	0	+0-001	0	0-007
	1/4	+0-001	+0-008	÷0-000	+0-002	0-002	-0-013
	1/2	+0.002	+0-010	+0.002	+0-003	-0-003	-0-017
	3/4	+0-007	+0-007	+ 0-003	+0.003	0-003	-0-013
	3	-0-024	0-005	-0-013	-0-003	0	0
9-20 10-10	Ð	Ď	+0-001	0	+3-000	Q	-0-002
	1/4	+0-000	+0-005	+ 0-00 0	+0-001	-0-001	-0-004
	1/2	+0-002	+0-006	+0-001	+9-001	-0.002	-0-009
	3/4	+0-004	+0-006	+0-001	+0-001	-0-001	-0-007
	L	-0-015	0-003	-0-006	0-002	0	0

TABLE I MUMERT CONFITCIENTS FOR INDIVIDUAL WALL FAMEL, TOP FREE, BOTTOM AND VERTICAL EDGES FIXED-Conf

4

...

÷Ĵ

17

.

¢

IS : 3370 (Part IV) - 1907

A CAUCHARD AND A

-

TABLE 3 MOMENT COEFFICIENTS FOR INDIVIDUAL WALL FANEL, TOP FREE, BOTTOM AND VERITCAL EDGES FIXED

(Claure 2.1, 2.1.1, 2.2 and 2.2.2)

Cantinual	_						
0	0	-0-012	-0-059	-0-017	-0-086	-	
0-027	-0.005	+0.003	-0.002	£00-0-1	-0-008	415	
-0-049	-0-100	+0-010	+0.010	910-0-F	+0-015	1/2	
-0.033	-0-011	010-C+	+0-COrt	4 0 023	40.013	4	
-0.060	0	+0-009	0	+0-027	0	0	2-00
0	0	-0.015	-0-077	-0-022	-0.108	-	
-0.027	0-005	100-0-1	-0.010		0-021	3/4	
-0-053	10:0-	+0.010	800-0+	+0-014	+0-011	1/2	
-0-056	-0-013	+0-013	+0-007	+0-022	+0-012	1/4	
-0.074	ð	+0.013	0	4-0-027	0	0	2-50
0	0	-0-018	0-092	0-025	-0-126	L.	
-0-028	-0-006	-0-000	-0-018	-0-004	-0.033	3/4	
0-035	10.011	+0-010	+0-008	010-0+	+0-005	1/2	
-0-071	0-014	+0-013	+0-007	610-0+	010-0+	N.	
-0-082	0	+0.014	0	+0.025	ð	c	00-C
(8)	(7)	(6)	(2)	(4)	(3)	(2)	9
Ma	M.	M ⁸	M,	* (4)			2
6/2		} ₹				x/a	¢ į a
		×		5	uid • Afy wa	of the wall of the wall y of the liqu moment as A	a = height 6 = walth 10 = densit Flarizantal Vertical m

16

4

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. Re End Semester Examination December – 2024 Jan 2025

14/1/25

Max. Marks: 100 Class: B.Tech. GVU Jum VI Semester: VII Name of the Course: Advanced Structural Analysis

Duration: 3Hours Program: Civil Engineering Course Code : PEC- BTC721

Instructions:

- Answer to any five questions
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Question		Max. Marks	Course outcome	Module No.
Q1 (a)	Analyse the beam shown in figure by Matrix Stiffness method and draw BMD & deflected shape. 20^{44} m 160^{44} 100^{44} 100^{44	10	1,6	2
Q1 (b)	Analyse the rigid jointed frame shown in Figure by flexibility method and draw BMD and deflected shape. Note that D supported on elastic foundation, which is free to move horizontally and also free to rotate. $EI = 2 \times 10^4 \text{ KN-m}^2$ and $K_s = 1000 \text{ KN/m}$.	10	2	4

				<u> </u>
Q 2 (a)	Using Column Analogy Method, analyse the beam shown in figure and draw BMD and Deflected shape. $I = \frac{1}{1} $	10	2	4
Q2 (b)	For the non-prismatic beam element shown in figure calculate the rotational stiffness at A and COF from A to B. A $\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & $	10	2	4
Q 3(a)	Derive the modified stiffness and carry over factor for a symmetric beam (axis of symmetry passing through center of beam) subjected to (i) symmetric loads (ii) Anti symmetric loads	4	1	3
Q3 (b)	Analyse the frame shown in figure by Elastic Centre Method and draw BMD and deflected shape. 100 kJ B 4m 4m 4m 4m	16 4	2	4
Q4	Analyse the frame shown in figure by Modified Moment Distribution Method and draw SFD, BMD & deflected shape 20 km/m F 100 km T 100 km T 151 151 4m 50 km B $20 km/m20 km/m$ F 20 km/m F 4m 21 21 4m 21 21 4m	20	1	3

- --

--\$. 2.

6 m

<u>ক</u>্ষান্দ মানু

	Analyse rigid jointed plane frame shown in figure by Matrix			
-	Stiffness Method and draw BMD and deflected shape.	8	1,6	2
25(a)	4m $2m$ $2m$ 1			
	Analyse the frame shown in figure by cantilever Method and draw SFD, BMD and deflected shape.	12	3	0
	60 KL			
Q5(b)				
	3012			
			-	
Q6(a)	(ii) State Muller Breslau's Principle	1	5	5
	For the beam shown in figure, construct the ILD for: (i) Reaction at 'C' R _C (ii) Bending Moment at B 'M _B '	10	4	5
Q6(b)	$\begin{array}{c} A \\ A \\ \hline \\$			
	Analyse pin jointed plane frame shown in figure by Matrix Stiffness Method and calculate the member forces and member displacements.	9	1,6	2
Q6(c)	60 60 60 60 60 60 60 60 60 60			
	4 m + 100 ks		<u> </u>	
	C/S are of all members = 1	0:00 mm		

3

-

			•	+
Q7(a)	Using plastic analysis, determine the load factor for the frame loaded as shown in figure. The Plastic Moment capacity of each member in KN-m is indicated in the figure. 3m $3m$ $3m$ $3m$ $3m$ 100 100 $4m$ $2m$ $2m$ $2m$ $2m$ $2m$ $2m$ $2m$ 2	16	5	7
Q7(b)	 i) Explain the need of approximate methods of Analysis (ii) Is Elastic centre method is flexibility method or stiffness method? Justify your answer. 	2	3	4

.

8 **26** 8

4

and a second

.

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION/ RE EXAMINATION, DECEMBER - 2024 JANLARY 2025

14/1/25

Maximum Points: 100

Semester: VII

Program: Civil Engineering B. Forg Civil Lem VII Duration: 3 Hr.

Course Code: PE - BTC - 761

Course Name: Pavement Design and Construction

Note :

- (i) Question 1 is compulsory
- Solve any four questions out of remaining six questions (ii)
- Assume suitable data if required (iii)

Q.No.	Questions	Points	Modul	BL	CO
· · ·	Write short notes on (Solve any four, each carries five marks)	20		,	· · · · · · · · · · ·
3	Equivalent single wheel load		01	02	01
	construction of roller compacted concrete pavement		03	02	03
. d	Construction of surface dressing		04	Ŭ1	0.4
· d	Burmister two layer and three layer theory.		02	02	02
	Different joints in rigid pavement	 	03	01	03
Q.2.			-	·	t ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Discuss the field procedure for conducting plate bearing test. How will			: ! !	, , ,
'l	you calculate the modulus of subgrade reaction	08	02	02	03
	The plate bearing test were conducted using 30 cm diameter plate on				j
	subgrade soil and over a base course of thickness 30 cm. the pressure yield			1	! : 1
	at 0.5 cm deflection on subgrade and base course were 1.2 kg/cm ² and				i 1 .
	2.5 kg/cm ² respectively. Design the thickness of base course required for			1	
	a wheel load of 5100 kg with a tyre pressure of 5.5 kg/cm ² for an allowable				·
	deflection of 0.5 cm using Burmister two layers theory.			-	
	If 7.5 cm thick bituminous concrete layer having modulus of elasticity				
	2500 kg/cm ² to be provided at the top of base, calculate the equivalent				
ь	thickness of base to be replace, also design three layers system	12	02	03	02

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION/ RE EXAMINATION,

DECEMBER - 2024 JAN 2025

Ç	<u> 2.3.</u>						
l		What is	Rigid Pavements? State the advantages and disadvantages of		02.8-	 	~
	a	rigid pav	ements over flexible pavements.	08	02 &	01	₀₂
1		Determin	e the wheel load stress using modified Westergard Equation,				
		warping	stress at edge and corner region of 25 cm thick rigid pavement	1 1	ł		
,		slab due	to daily variation of temperature . frictional stress due to			:	
		seasonal	variation of temperature and combine stress.	1	;	-	;
		Assume f	ollowing data			•	 1
		(i)	The transverse joint is at 4.5 m interval and longitudinal joint	, , ,		:	:
:	-		is at 3.5 m distance.	:		•	:
1	:	(ii)	Maximum difference of temperature during day to be 0.6° C	1		, İ	:
;	i 1		per on thickness of the slab.		1	d F	!
ĺ		(iii)	Modulus of clasticity of concrete $\approx 3.1 \times 10^5 \text{ kg/cm}^2$.			;	
ļ			Poisson's ration = 0.15. Coefficient of thermal expansion =		ŀ	;	
і			10* 10 ⁻⁵ per ⁹ C. Modulus of subgrade reaction, $k = 8$				F
b	1		kg/cm^3 , Radius of loaded area = 15 cm,	12	03	03	02
Q.4	1.						
,	÷	Define rut	ing failure criteria. State the rutting equation for calculation		*	с	-+
a		of design l	ife of the Pavement	06	02	02	! 02
b	;	Discuss the	steps for design of cement concrete low volume rural roads.	06	03	02	- <u></u>
		Design the	tie bar in longitudinal joint of cement concrete pavement				-
	ļ	naving thic	kness 25 cm and width 3.5 m using the following	:		:	
	I	Density of	concrete = 2400 kg/cm ³ , Allowable working stress in	;		: : :	
	c	leformed s	steel bar = 2000 kg/cm^2 , Permissible bond stress in concrete		i i i	-	1
с	=	= 24 kg/cm	2 , Coefficient of friction = 1.2	08	03	0.3	02
Q.5.							1
	 [Discuss wit	h sketch why surface drainage system required in highways.		1	r 	<u>;</u>
<u>a</u>	H	low will ye	ou estimate the design discharge.	08	06	02	02

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF FNGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION/ RE EXAMINATION,

1.11

.

DECEMBER _ 2024 JAN 2025

	The surface water from the road side is drained to longitudinal side drain.				
	From across the half of bituminous surface of total width 7.0 m, the			-	
	shoulder and adjoining land on one side of drain is 10 m and on other side				
	of longitudinal drain the water flow across from reserved land with grass				 # \$
	and 2 % cross slope to words side drain. The width of strip of reserved		1		
	land is 30 m.			1	1 1 1 1
	The runoff coefficient for pavement, shoulder and reserved land with			1	í
	gross cover is 0.80, 0.30 and 0.38 respectively. The length of stretch of		•	•	
	and parallel to road from where water is expected to flow to the side drain		1		1
	is 500 m. Estimate the quantity of runoff flowing through longitudinal			1	
	drain. Also design the longitudinal rectangular drain. Take $n = 0.022$, $v =$				
b	0.90 m/sec. (1) Period of frequency = 25 years	12	06	04	03
Q.6.			1	1	- - -
 a	Discuss the field procedure for conducting Benkelman Beam study.	10	05	02	02
	The Benkelman Beam Study were carried out on a poor stretch of road.			1	1
	The 15 sets of observations were taken for the stretch of road. If the		1		
	rebound deflection for each set of observation are:		; ,	1	
	1.46 1.52 1.56 1.76 1.96				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 5			۲ ۱ ۱
					1
	Also, The traffic volume study were carried out and on last count it is		l L	;	
	found to be 1000 cvpd and three years required for overlay construction	 •		1	•
	after last count. The temperature is observed at 1 hr interval during the			1	
	study and average temperature found to be 38°C. Design the overlay				
	thickness of (i) Bitumenous Macadam, (ii) Bitumenous Concrete and (iii)				
	WBM type overlay as per IRC 81:1997. (assume LDF = 0.75, VDF = 1.5.		1 (£ •	:
	subgrade moisture correction factor = 1.3, 84 % deflection in overlay				
b	design)	10	05	03	03
0.7			1		

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION/ RE EXAMINATION,

DECEMBER - 2024 SAN 2025

:	How will you repair following types of distresses observed on surface of	<u>.</u>		·	!
	flexible pavement				1
- a	(i) Pot holes (ii) longitudinal cracks	10			ļ
	How will you decide the optimum quantity of lime required for				+
	stabilization of subgrade? Also, discuss the steps for construction of lime			: ! !	
b	stabilized subgrade.	10	04	03	03

Q·2.(b).

• 3

Bharatiya Vidya Bhavan's -**SARDAR PATEL COLLEGE OF ENGINEERING** (Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

25

JAN

Poor turf Average Juri Q.5(b). 9 2 0 50 Ċ c 50 CURVES TO ESTIMATE THE TIME OF CONCENTRATION 45 50 60 30 Q 20 10 1 Time of concentration (min s **250** 150 RAINFALL INTENSITY, MACHA. 100 50 25 15 10 1.0 1-5. 12 11 2.4 8. 3 4 6 20 30 40 60 Ż 5 10 HOURS. MINUTES. - DURATION

Fig. 11.4 Typical Rainfall Intensity Duration Curve

Moisture correction factor for clayey subgrade with high plasticity (PI > 15) for low rainfall areas (Annual rainfall \leq 1300 mm)

FIG 10.10 Overlay thickness design curves (IRC: 81–1997)

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munahi Nagar, Andheri (W) Mumbai 400058

Program: B.Tech Civil Engineering Deven V1

Course Code: PE-BTC726

Duration: 3 hours Maximum Points:100 Semester:VII

Course Name: Prestressed concrete

Notes : Attempt any 5 main questions out of 7; Assume any missing data and state the same clearly; Illustrate your answers with neat sketches, Use of IS 1343 is allowed

Q.No.	Questions	Points	со	BL	Mc I
1.a)	A cantilever prestressed I girder has flange dimensions as 700x350mm and web dimensions as 300x700mm and the span is 5m. It is prestressed using a cable with parabolic profile, such that effective prestressing force is 1900kN. The cable is concentric at free end and has an eccentricity of 200mm at support. The girder supports a live load UDL of 10kN/m. Calculate the total stresses induced in the girder at midspan and supports.	10	1	3	
1.b)	Explain external and internal prestressing with suitable examples and applications.	05	1	1,2	
1.c)	Explain the need of high strength materials in prestressed concrete structures	05	1	1,2	
2.a)	Calculate the flexural capacity of a pretensioned I girder having the following properties: Flange = $800x250mm$ Web = $300x2000mm$ Area of cables = $1200mm^2$ fpu = $1650MPa$ Effective depth = $2000mm$ fck = $45MPa$	06	3,5	3	
2.b)	Explain the steps in strain compatibility method for evaluating flexure capacity of prestressed sections.	04	3	2	
2.b)	Design the shear reinforcement <i>at quarter span</i> for a simply supported beam of rectangular cross section 350mmx800mm and span 14m. It carries a live load UDL of 10kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 300mm; fck = 45MPa Effective prestress in cable = 1000MPa Characteristic strength of PT steel = 1600MPa Use Fe500 grade steel for reinforcement.	10	3,5	4	

A COLLEGE OF

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

	A simply having a c	supported ported	st tensioned bea of 300mm X 120 order of cables 1-	m of span 20m with 2 cables 0mm is successively tensioned 2.				
		Profile	Eccentricity at midspan	Eccentricity at support				
	Cable 1	Parabolic	200mm (below CG)	50mm (below CG)				
3.a)	Cable 2	Straight	450mm (below CG)	450mm (below CG)	15	2,5	3	
	Each cable 1250MPa co-efficien prestress Calculate t friction and	has a cross s and M45 is u t for wave ef = 28days. A he % losses o d anchorage s	section area of 30 sed for the beam. fect = 0.0014/m. nchorage slip = lue to elastic shor lip.	0mm ² and an initial tension of Co-efficient for friction = 0.5; Age of concrete at transfer of = 2.5mm. Es = 210kN/mm ² , tening, shrinkage (at 100days),				
3.b)	Explain the principal st	e effect of pr tresses and M	estressing on she ohr's circle conce	ar resistance of sections using ept.	5	1,3	2	
4.	Design a T the followi Effective s Es = 210kl Assumed I Use 8mmd 1600MPa.	Type 1 post 1 ng data : pan = 18m; I V/mm^2 oss % = 35% o strands for Calculate the y with safe ca	ensioned bonded ive load = 20kN/ cables. The char e size of section ble zone. Draw n	girder (simply supported) for m; fck = 45MPa; fci = 30MPa; acteristic strength of cables is n required, prestressing force, eat sketch of the cable profile	20	3,5	4	
5.a)	The prestro precast be 1.5x10 ⁻⁴ fin and sketch <i>Cast in silt</i>	essed concret am and cast nd the shrink its variation finnge	e beam as shown in situ slab. If age stresses at ex- across the depth. 2000 mm $\leftarrow 2000 \text{ mm}$	1 in figure below consists of a the differential shrinkage is treme fibres of slab and beam Use M40 grade of concrete. 120 120 All dimensions in mm	12	4	3	

Pharmiva Vidva Bhavan's

1

يو. مي يوران رو م

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Mumshi Nagar, Andhori (W) Mumbai 400058

END SEM/RE-EXAM EXAMINATION DEC/JAN 2024-25

5.b)	Explain the terms propped and unpropped sections in context of composite construction. State the relative merits and demerits of these methods.	08	4	2	1
6.a)	 i) Derive the value of deflection for a simply supported beam prestressed with parabolic cable -concentric at supports and having eccentricity "e" at midspan. ii) A simply supported prestressed beam of cross section 350mmX800mm and span 12m has a straight profile of cable with eccentricity of 200mm below CG and a parabolic profile concentric at supports and having e=150mm at mid span. It carries a live load of 10kN/m. The area of each cable is 500mm² and it is initially tensioned to 1450N/mm². % losses = 30% Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 	10	1	3	
6.b)	The end block of a post-tensioned beam has two anchorages with 300x300 mm - square bearing plates located at 350mm from top and bottom respectively. The size of end block is 700x1400mm. An initial pre-stressing force of 800 kN is applied to each anchorage. Design the end zone reinforcement.	10	3,5	3,5	
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1250kN. Locate the pressure line due to prestressing force and a UDL of 25kN/m on full span	20	4	4	

All eccentricities in mm 180 180 5m 7.5m .5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munchi Nugar, Andheri (W) Mumbai 400058

END SEM/RE-EXAM EXAMINATION-DEC/JAN 2024-25

Program: BTECH (MECH.ENGG.)

 $(\mathcal{L} \mathcal{V} \mathcal{M})$ **Duration:** 3 hrs.

Course Code: OE-BTM717

Maximum Points: 100

Course Name: Digital Twin

Semester: VII

16/11/2

- Solve any 5 questions out of seven
- Figures to the right indicate full marks
- Draw neat sketches & figures wherever required

Q.No.	Questions	Points	со	BL	PI
Q. 1 (a)	 (1) Define the role of sensors in Industry 4.0. How do advancements in sensor technology enable real-time decision-making in smart factories? (2) Describe how computing power and connectivity contribute to the implementation of Industry 4.0 in 	[05] [05]	1,2,3	2	3.2.1
(b)	 (1) Compare Product Digital Twin and Process Digital Twin. Discuss their roles in improving manufacturing efficiency. (2) Discuss the potential applications of Partial Digital Twins in scenarios where complete digital twin implementation is not feasible. Provide examples & Figures 	[05] [05]	1,2,3	2	3.2.1
Q.2 (a)	Explain how predictive maintenance can enhance decision-making in Smart Factories. What role do Digital Twins play in implementing predictive maintenance strategies? Explain with neat sketches. Also explain the predictive maintenance/analytics algorithm pipeline	[10]	1,2,3	2	5.4.1
(b)	Explain how the integration of Digital Twin with PLM can create a feedback loop that improves product design and lifecycle management.	[10]	1,2	2	5.4.1
Q.3 (a)	A Smart City uses Digital Twins for traffic management. Explain how Big Data Analytics and Machine Learning can predict and prevent traffic jams. Illustrate your answer with a figure showing data sources,	[20]	2,3	3	5.5.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munchi Mayar, Andherl (W) Mumbal - 400058

·	END SEM/RE-EXAM EXAMINATION DEC	JAN 20 2	24-25	•	
	analytics, and feedback loops.		,		
Q.4 (a)	Propose an architecture for a smart factory that integrates IIoT platforms with Digital Twins. How can this architecture enhance production efficiency and reduce downtime?	, [10]	2,3	3	5.5.1
(b)	Explain BIM with neat sketch? Also explain advantages of BIM & Machine Learning integration	[10]	1,2,3	2	5.5.1
Q.5 (a)	A city plans to implement a digital twin for its transportation system. What data sources are required, and how can IIoT platforms support real-time monitoring and predictive analytics?	[10]	3,4	3	5.5.1
(b)	Digital Twin technology is transforming industries by enabling new business and revenue models in Smart Cities, Smart Manufacturing, and Smart Factories. Discuss how Digital Twins can be leveraged to create innovative business models in these domains.	[10]	2,3	3	5.1.2
Q.6	 How can integrating Digital Twins with Blockchain and AI revolutionize the PLM ecosystem? Propose a conceptual framework. Explain the integration of all of them in detail along with its benefits Discuss the role of Digital Twins in improving the efficiency of Enterprise Resource Planning (ERP) systems. Provide examples of real-time data utilization with proper figures 	[10]	3,4	3	5.5.1
Q.7	Write Short notes on (any three)	[20]	2,3,4	3	5.4.1, 5.5.1
	 DT in Warehouse Management Systems (WMS) DT in Smart Containers DT in Product Development DT in Logistics DT in Construction Industry Digital twin driven power transformer DT in Asset Maintenance 				
	******************* All the Best ************************************	****	***	<u>.</u> [