Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

218/22

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Direct Second Year – Re-Examinations August 2022

Program: B. Tech. Civil Engineering Sum 19

Duration: 3hrs.

Course Code: PE-BTC404 Maximum Points: 100

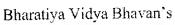
Semester: IV

Course Name: Surveying & Geomatics

Notes:

1. There are TOTAL SEVEN MAIN questions, each of 20 points.

2. QUESTION 1 is COMPULSORY.


3. From the remaining SIX Questions Solve ANY FOUR.

4. Assume suitable data, wherever necessary and State it clearly.

5. Write answer to each question on a new page.

 Answers to be accompanied with appropriate sketches/facts & figures/table or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions	Points	co	BL	PI
1.	Answer the following: (2 marks each)		-		
	 Distinguish between horizontal curve and vertical curves. Define Triangulation and Trilateration Distinguish between aerial remote sensing and space remote sensing Define super-elevation and sight distance Define Photo/Image Interpretation Focal length and photo scale in aerial photographs Total station and EDM State the basic principle of Global positioning system Give the difference between theodolite and tacheometer 	20	1,2,3	1,4	1.1.1
	10. Define: Horizontal and vertical control in setting out works				
2.A	Design the transition curve for a railway line with rail gauge of 1.5m: vehicle design speed (1), transition curve length (2), spiral angle (1), shift of the transition curve (1). Following data is available: Super-elevation – 15cm, radius of circular curve – 300m, rate of change of radial acceleration – 0.3m/s ³	5			
2.B	 State various methods of setting out horizontal curve (2). Explain the method in detail with proper sketch (5). With proper sketch, explain the concept of 'Sight distance' (3). Explain, with the help of a neat sketch, the 'Tangent Correction method' of setting out Vertical curve. (5) 	15			
3.A	Define 'Figure of Triangulation' (3). State different figures adopted for triangulation with proper sketches (6). Explain the criteria for carrying out triangulation survey (6).	15	-		
3.B	Differentiate between Vertical, Tilted and Oblique photographs with proper sketches (5).	5			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Direct Second Year – Re-Examinations August 2022

4	 State various elements of aerial photo interpretation (2). Explain any two elements with proper examples (6). Aerial photographs were taken with a camera having a focal length of 160mm, the average elevation of the ground in the photograph was 180m. Find the scale of the map if the flying height was 3000m(2) and the flying height required to have a photo scale of 1 in 6000 (2). Explain in short the working of EDM, with a neat sketch (8) 	8 4 8	11		
5.	 Draw a neat sketch and show the range line, sounding points and shore line (2). Give the requirements for planning the sounding points (3). With neat and labelled sketches, the location of sounding stations by means of Intersecting ranges (5) Give the difference between Registering and Nonregistering (Self-registering) tide gauges (2). Explain the working of the registering (recording) tide gauge (3) Give the types of self-registering gauges (2) and explain any one in detail (3). 	5 5 5 5			
6.A	1. Given the data as shown here: Inst Staf Lin Bearin Vertica stn fstn e g langle O A OA 84°36' 3°30' 1.35, 2.10, 2.85 O B OB 142°24' 2°45' 1.955, 2.875, 3.765 Find the distance between stations A & B and the gradient between stations A & B. (Staff held normal at both the stations)	10			
6.B	Explain with neat sketches the difference between primary, secondary and tertiary triangulation methods.	10		-	
7.A	Write a note on: 2. Importance of setting out works (5). Methods of locating a new structure w.r.t the permanent structure (5).	10			
7.B	1. Derive the stadia equation for a line of sight inclined to the staff intercept (5). State and explain the errors in stadia measurement in a teacheometric survey (5).	10			

---- The End -----

BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations August 2022 (DSE)

(2021-22)

Program: S.Y. B. TECH LUM

Course Code: PC-BTC-405

Course Name: HYDRAULIC ENGINEERING

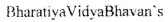
Duration: 03 Hrs.

Maximum Points: 100

Semester: IV

Notes:

23/8/22


• Attempt **any five** questions.

• Answer to all sub questions should be grouped together.

• Figure to right indicates full marks.

• Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	CO	BL	PI
1	(a) Explain the significance of dimensional analysis in experimental studies with special emphasis in hydraulic engineering.	10	4	2	1.3.1
	(b) Explain Buckingham's-π method of dimensional analysis.	10	4	4	2.1.2
	(a) Explain with neat sketches HGL and TEL for pipes in parallel and pipes in series.	10	1	2	1.3.1
2	(b) What do you mean by Siphon? Explain its working with neat sketches.	10	1	4	2.1.2
	(a) What is Impulse momentum principle? Explain its applications in hydraulic engineering with suitable examples.	10	1	4	1.3.1
3	(b) Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceeds 50%.	10	1	5	2.3.1
	(a). Explain working of hydraulic turbine with a neat sketch and define hydraulic efficiency, mechanical efficiency and overall efficiency of a hydraulic turbine	10	2	2	2.1.2
4	(b) A Pelton wheel has a mean bucket speed of 10 meter/sec with a jet of water flowing at a rate of 0.85 cum/sec. under a head of 40 meter. The bucket deflects the jet through an angle of 165°. Assuming coefficient of velocity as 0.98, Calculate power and overall efficiency of turbine	10	2	4	2.3.1
E	(a) Explain: (i) Priming of a centrifugal pump; and (ii) Pumps in series and parallel	10	2	2	2.1.2
5	(b) Explain: performance characteristics curves of hydraulic turbines; also discuss the term specific speed of turbine.	10	2	4	3.1.6
6	(a) Derive the condition for most economical triangular channel section to carry maximum discharge.	10	2	2	2.1.2
	(b) For a trapezoidal channel with bottom width 30 meter and side slopes 2H: 1V, Manning's constant (N) is 0.018 and bottom slope is	10	2	4	3.4.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations August 2022 (DSE)

(2021-22)

	0.000235. If it delivers 60 m ³ /s of water, determine the normal depth of				
	flow.				
	(a)Differentiate between Gradually varied flow and rapidly varied flow. Explain with an example.	10	3	4	2.3.1
7	(b) What is Specific Energy curve? How it is important in the open channel flow studies? Explain.	10	3	4	2.3.1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Duration: 3 Hrs

Semester: IV

Program: B. Tech Civil

Munshi Nagar Andheri (W) Mumbai 400058

Reexam DSY

August 2022

Max. Marks: 100

S.Y. B. Tech Civil Lem 1

Class: Name of the Course: Environmental Engineering I

Course Code: PC-BTC407

Instructions:

Question one is compulsory

Attempt any four of remaining six questions

Draw neat sketches/diagrams wherever required

Assume suitable data if necessary and state them clearly

Figure on right indicate maximum points for the given question, course outcomes attained,

Bloom's Level and Performance Indicators

Answer the questions	(20)	CO	BL	PI
(i) Explain the need of filtration in water treatment.	(10)	1,2	2	1.2.1
(ii) Explain process of disinfection and its requirement.				
(iii) Give advantages of tube settlers				
(iv) Explain the importance of coagulant aided sedimentation				
(v) Explain color and odor removal				
Draw components of water supply scheme and Explain factors affecting need of water supply scheme	(10)	1,2	2	3.2.1
	(20)			
Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity, salts	(10)	1,2,3	3,4	3.3.1
Explain per capita demand. Explain factors affecting percapita demand.	(10)	1,2	3,4	5.3.1
Answer the following questions				
Explain population forecasting and why it is required for designing the water supply scheme. A town has a population of 8,00,000 in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly developing city.	(10)	1-3	4-5	3.4.2
	(ii) Explain the need of filtration in water treatment. (iii) Explain process of disinfection and its requirement. (iii) Give advantages of tube settlers (iv) Explain the importance of coagulant aided sedimentation (v) Explain color and odor removal Draw components of water supply scheme and Explain factors affecting need of water supply scheme Answer the following questions Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity, salts and pathogens after each unit should be mentioned. Explain per capita demand. Explain factors affecting percapita demand. Explain Fire demand in detail Answer the following questions Explain population forecasting and why it is required for designing the water supply scheme. A town has a population of 8,00,000 in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly	(ii) Explain the need of filtration in water treatment. (iii) Explain process of disinfection and its requirement. (iii) Give advantages of tube settlers (iv) Explain the importance of coagulant aided sedimentation (v) Explain color and odor removal Draw components of water supply scheme and Explain factors affecting need of water supply scheme Answer the following questions Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity, salts and pathogens after each unit should be mentioned. Explain per capita demand. Explain factors affecting percapita demand. Explain Fire demand in detail Answer the following questions Explain population forecasting and why it is required for designing the water supply scheme. A town has a population of 8,00,000 in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly	(ii) Explain the need of filtration in water treatment. (iii) Explain process of disinfection and its requirement. (iii) Give advantages of tube settlers (iv) Explain the importance of coagulant aided sedimentation (v) Explain color and odor removal Draw components of water supply scheme and Explain factors affecting need of water supply scheme Answer the following questions Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity, salts and pathogens after each unit should be mentioned. Explain per capita demand. Explain factors affecting percapita demand. Explain Fire demand in detail Answer the following questions Explain population forecasting and why it is required for designing the water supply scheme. A town has a population of 8,00,000 in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly	(i) Explain the need of filtration in water treatment. (ii) Explain process of disinfection and its requirement. (iii) Give advantages of tube settlers (iv) Explain the importance of coagulant aided sedimentation (v) Explain color and odor removal Draw components of water supply scheme and Explain factors affecting need of water supply scheme Answer the following questions Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity, salts and pathogens after each unit should be mentioned. Explain per capita demand. Explain factors affecting percapita demand. Explain Fire demand in detail Answer the following questions Explain population forecasting and why it is required for designing the water supply scheme. A town has a population of 8,00,000 in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly

1 1	Table 1.	, =		11		T = 0.4 0			+ 4	
Í	Year	1970	1980	1990	2000	2010			= =	
	D 1-4'	3 55 000	4.10.000	5,55,000	6,20,000	8,00,000	(10)	1-4	3-4	4.3.1
-+	Explain intakes	e and type of	intakes with	their functi	ons.	7/57	(10)	1-4	3-4	7.0.2
)]	Explain incom-	3 4114 -/-				F281			_2	
1	Answer the fo	llowing que	stions				(10)	1-3	3-5	3.2.1
	Weite short no	ites on					(10)	1-0		
~, 1			on; Ideal sett	ling tanks	- 0	C treatment	(10)	1-3	3-4	3.2.2
					for sotten	ing for treatment	(10)	1	_	
-	mg/L; Mg Cl:	$_{2}$ = 150 mg/L	. Compute the	ne quantities	3 Of Chemic	cals required for (Consider data	1	01 %		
	Raikot in year	2040. Assur	ne soda ash	and time pu	irity yu 👊	(Consider data			200-	
Ì	in Q 3(a))									
							(20)	edia.		Τ
25	Answer the f	ollowing qu	estions	- (11:	1 for th	a nonulation for		2-3	2-3	2.2.1
(a)	COD	3 XX/X D	Docian circu	ilar settiing	tank ioi ui	ne population for	(10)	>		
-,							(10)	2-3	3-4	3.2.1
	Design a nor	Lia Accorda	ton for Barke	at for JUAU i	X/ITD RULLOVY	INV UCLARIO *****	\ \/	-	{	1
(b)	Design a pac	igie noccuia	tor tor Kajki	0(10) 2040	With 10110	ing details with			1	Į.
(b)										
(b)	average water	r demand as	150 lpcd:	– 70c-1. Sne	ed of nadd	lles = 3.5 rpm				
(b)	average water	r demand as	150 lpcd:	– 70c-1. Sne	ed of nadd				,	
(b)	average water Detention to K=0.25; μ=	er demand as me= 15 min; 1.0087X10 ⁻³	150 lpcd: ; Average G Ns/m²; ρ=99	= 70s ⁻¹ ; Spe 98 kg/m ³ at	ed of padd 20°C; Rati	lles = 3.5 rpm io of L: B= 3.				
(b) Q6	average water Detention tin K=0.25; µ=	r demand as me= 15 min; 1.0087X10 ⁻³ following qu	Ns/m ² ; ρ=99	= 70s ⁻¹ ; Spe 98 kg/m ³ at	ed of padd 20°C; Rati	lles = 3.5 rpm io of L: B= 3.	r (10)	3-4	3-5	4.3.2
	average water Detention tin K=0.25; μ= Answer the Design rapid	r demand as me= 15 min; 1.0087X10 ⁻³ following qud sand filter	S Average G Ns/m²; ρ=99 nestions for (size, u	= 70s ⁻¹ ; Spe 98 kg/m ³ at	eed of padd 20°C; Rati	and wash water	r (10)			
Q6 (a)	average water Detention tin K=0.25; μ= Answer the Design rapid troughs) for	or demand as me= 15 min; 1.0087X10 ⁻³ following qual the description of the description of the description of the population of the description	Ns/m ² ; ρ=99 uestions for (size, u on of 5,00,00	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water	eed of padd 20°C; Rati	lles = 3.5 rpm io of L: B= 3. and wash water f 150 lpcd. ors impact the us	e (10)	3-4	3-5	4.3.2
Q6	Answer the Design rapid troughs) for	r demand as me= 15 min; 1.0087X10 ⁻³ following qu d sand filter the population	Ns/m ² ; ρ=99 nestions for (size, u on of 5,00,00 c of a good d	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant.	eed of padd 20°C; Rati	and wash water f 150 lpcd. ors impact the us hlorine dosage i	e (10)			
Q6 (a)	Answer the Design rapid troughs) for Explain the of disinfecta	following que the population characteristic ants. Find c	Average G Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	e (10)			
Q6 (a)	Answer the Design rapid troughs) for Explain the of disinfecta	following que the population characteristic ants. Find c	Average G Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	e (10)			
Q6 (a)	Answer the Design rapid troughs) for Explain the of disinfecta mg/L for the mg/L and a	following que the population characteristic ants. Find c	Average G Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water f 150 lpcd. ors impact the us hlorine dosage i	e (10)			
Q6 (a)	Answer the Design rapid troughs) for Explain the of disinfecta	following que the population characteristic ants. Find c	Average G Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	e (10) n 3 0			
Q6 (a)	Answer the Design rapid troughs) for Explain the of disinfecta mg/L for the mg/L and a clipcd.	following que d sand filter the population characteristic ants. Find ce city with pochlorine den	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of nand is 0.8 n	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	(10) (10) (10) (10)	3-4	2-4	3.4.1
Q6 (a) (b)	Answer the of disinfecta mg/L and a clpcd.	following que the population of city with pochlorine den	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of nand is 0.8 m	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	e (10) n 3 0			
Q6 (a)	Answer the of disinfecta mg/L and a lpcd. Answer the Explain with the control of the mg/L and a lpcd.	following que de sand filter the population characteristic ants. Find ce city with pochlorine den the following que the short note.	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of nand is 0.8 m	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	(10) (10) (10) (10)	3-4	2-4	3.4.1
Q6 (a) (b)	Answer the mg/L and a clipcd. Answer the Explain with (a) Electroid	following que de sand filter the population characteristic ants. Find control e city with population chlorine den chlorine chlori	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of nand is 0.8 m	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. umed in kg	eed of padd 20°C; Rational Research age system demand of What factor /day and clifthe residu	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	(10) (10) (10) (10)	3-4	2-4	3.4.1
Q6 (a) (b)	Answer the of disinfecta mg/L and a clpcd. Answer the Explain with (a) Electrod (b) Reverse	following que de sand filter the population characteristic ents. Find ce city with pechlorine den the short note dialysis cosmosis	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of mand is 0.8 m mestions mestions	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. numed in kg 10,00,000 ing/L and av	nge system demand of What factor/day and clif the residuerage water	and wash water 150 lpcd. ors impact the use hlorine dosage is ual chlorine is 0. er demand of 12	(20) (10)	3-4	1-2	3.4.1
Q6 (a) (b)	Answer the of disinfecta mg/L and a clpcd. Answer the Explain with (a) Electrod (b) Reverse	following que de sand filter the population characteristic ents. Find ce city with pechlorine den the short note dialysis cosmosis	Average G-Ns/m²; ρ=99 mestions for (size, u on of 5,00,00 c of a good d hlorine cons opulation of mand is 0.8 m mestions mestions	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 00 for water disinfectant. numed in kg 10,00,000 ing/L and av	nge system demand of What factor/day and clif the residuerage water	and wash water 150 lpcd. ors impact the use hlorine dosage is ual chlorine is 0. er demand of 12	(20) (10)	3-4	1-2	3.4.1
Q6 (a) (b)	Answer the of disinfecta mg/L and a lpcd. Answer the Explain with (a) Electrod (b) Reverse (c) Distillat	following que de sand filter the population characteristic ents. Find ce city with pechlorine den the short note dialysis cosmosis	Average G-Ns/m²; ρ=99 mestions for (size, u) on of 5,00,00 c of a good d hlorine consopulation of mand is 0.8 m mestions es	= 70s ⁻¹ ; Spe 98 kg/m ³ at anderdraina 90 for water disinfectant. umed in kg 10,00,000 ing/L and av	nge system demand of What factor/day and clif the residuerage water	and wash water 150 lpcd. ors impact the us hlorine dosage is ual chlorine is 0.	(20) (10)	3-4	1-2	3.4.1

ormula Sheet $P_n = P_o \left[1 + \frac{r}{100} \right]^n$	Al=27 Ca=40 C=12	WLR=Q/B WLR= Q/2πR DT= V/Q SOR= 12-20 m ³ /d/m ²
$P_n = P_o + nx + \frac{n(n+1)}{2}y$ $\log_e \left[\frac{P_s - P}{P}\right] - \left[\frac{P_s - P_o}{P}\right] = -kF$	O=16 S=32 Cl=35.5 H=1 Na=23	$V=0.849 \ C \ R^{0.63} \ S^{0.54}$ $Leq=L_{50}+\{\ (L_{10}-L_{90})^2\ /\ 60\}$ $NC=L_{10}-L_{90}$ $SOR=24-30m^3/d/m^2$
$\frac{\log_e P - P - P_o - P_o}{P}$	Fe= 55.5	2 of 3

Mg=24 Si=14	
G =300-700s-1 0.5 min to 1 min	$P=\frac{1}{2}C_{d}\rho. A_{p}. v_{r}^{3}$ $C_{d} = 1.8 \text{ for flat paddles}$ $\rho = 998kg/m^{3}$ $v_{r} = (1 - 0.25)v_{p}$
$v_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$ Value of v=1.002X10 ⁻⁶ m ² /sec $v_{d} = \sqrt{\frac{8\beta}{f'}} (S_{s} - 1) dg$ $f' = 0.025 - 0.03$ g=9.8m/s ²	Q/A; Q/ perimeter; Q/b; V/Q V= D ² (0.011D+0.785H) $G * t = \frac{V}{Q} * \sqrt{\frac{P}{\mu V}} = \frac{\sqrt{PV/\mu}}{Q}$
	$V_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$ Value of u=1.002X10 ⁻⁶ m ² /sec $v_{d} = \sqrt{\frac{8\beta}{f'}} (S_{s} - 1) dg$ $f' = 0.025 - 0.03$

ALL THE BEST