

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute under Mumbai University) Andheri (W), Mumbai – 400058

COURSE CONTENTS

Sem. V

T. Y. B. Tech. (ELECTRICAL) ENGINEERING

R22

Academic Year: 2024-2025

List of Courses

PC-BTE501	Measurement & Instrumentation
PC-BTE502	Control System
PC-BTE503	Electrical Machines II
PC-BTE504	Power System Analysis
PC-BTE505	Communication Engineering
PC-BTE551	Measurement & Instrumentation Laboratory
PC-BTE552	Control System Laboratory
PC-BTE553	Electrical Machines II Laboratory
PC-BTE554	Power System Analysis Laboratory
PE-BTE501	Design of Power Electronics Converters
PE-BTE502	Sensors & Actuators
PE-BTE503	Digital Signal Processing
MC-BT003	Environmental Science
SK-BTM5xxx	Skill based Course
VA-BTExxx	Value Added Course

Cours	se Code	Course Name		
PC-B	PC-BTE501 Measurements and Instrumentation			
Course pro	Course pre-requisites Basic Electrical Engineering, Electrical networks, Signals and systems			
		Course Objectives		
The objecti	ives of this co	ourse are		
of r 2. Fan osc 3. Dev mea 4. Dev	 Understanding the basic principles of electrical and electronic measurement, including units of measurement and calibration procedures. Familiarizing students with common types of measurement devices, such as multi-meter, oscilloscopes, signal generators, and frequency counters. Developing skills in the use of measurement equipment, including measurement setup, measurement execution, and data analysis. Developing the ability to analyze and interpret measurement data, and to draw meaningful conclusions from it. 			
		Course Outcomes		
Upon succe	essful comple	etion of the course, students should be able to		
2. Inte 3. Apj 4. Apj	 Apply the basics of electrical and electronics for analog signal measurement. Interpret measurement data and identify source of errors in measurement. Apply the knowledge of digital techniques in measuring instruments. Apply calibration techniques and standards of measurements to ensure accuracy of measurement instruments. 			
		Course Content		
Module No.		Details	Hrs.	
1	Analog me	Measurements easuring instruments, General features of indicating, recording ating type of instruments, Errors in measurements	04	
2	Measureme balanced an Measureme Measurem earth resis	ent of electrical quantities nt of current, voltage and Energy, Measurement of power in d unbalanced electrical systems. ent of electrical parameters ent of low, medium and high resistance, insulation resistance, stance, Wheatstone bridge, Kelvin double bridge, Megger, AC r measurement of inductance and capacitance.	09	
3	Theory of importance	At transformer Current and potential transformers, Definition, various types, e and applications, ratings, Definition of ratio and phase angle M sensors, CCVT	06	

4	Instruments for generation and analysis of waveforms Oscillator: Wein bridge oscillator, Phase shift oscillator, Standard signal generator, Function generator, Wave analyzer, Harmonic distortion analyzer, Spectrum analyzer, Cathode ray oscilloscope: time, frequency and phase angle measurement using CRO.	07
5	Digital Instruments Analog to digital conversion, sampling theorem, Digital measurement technique, Digital frequency meter, Digital voltmeters (DVM). Digital Storage Oscilloscope, Errors in digital measurement, Data logger, Digital sensors e.g. Sensors in solar PV system,	06
6	Transducers& basic Instrumentation Measurement of temperature, vibration, velocity (speed), flow, level, Photoelectric, strain gauge, Characteristics and selection for given Application	05
7	Calibration of Instruments and Safety in instrumentation Need of Instrument Calibration, Preparation for calibration, Standard calibration procedure, Five point calibration procedure, Safety in instrumentation, Standards for measurement (IEC 62419)	05

Text Books:

1. Sawhney A.K. "A course in Electrical and electronics measurements and Instrumentation" by Dhanpat Rai and Sons, 17th edition 2007.

2. T.S. Rathore, "Digital measurement techniques" by Narosa Publishing house, 1996

Reference Books:

Kalsi H.S. "Electronic Instrumentation", 3rd edition, Tata McGraw Hill, 1997.
 Doeblin E.O., "Measurement system application and design", 4th edition, Tata McGraw Hill, 1990

Evaluation:

Sr No.	Name of the exam	Total marks	Modules
1	T-I	20	1,2,3
2	T-II	20	3,4
3	End semester examination	100	1-7

Cours	se Code	Course Name	
PC-BTE502		Control System	
Course pr	e-requisites	Electrical Networks, Laplace Transform, Signals and System	
		Course Objectives	
 Discus Discus 	ss state variab	se, frequency response	
		Course Outcomes	
 Model l Analyze Analyze 	inear-time-inv e Linear Time e Linear Time	e Invariant system in frequency domain collers, compensators and nonlinear control systems. Course Content	ons.
Module No.		Details	Hrs.
1	linear time Feedback	on to control problem. Industrial Control examples. tical models of physical systems. Transfer function models of e-invariant systems. Control: Open-Loop and Closed-loop systems. Benefits of Block diagram algebra, Signal flow graph.	06
2	Standard for standa	ponse Analysis-I test signals, Time response of first and second order systems and test inputs, Application of initial and final value theorem, nee specifications for first and second-order systems.	06
3	Concept of	ponse Analysis-II of Stability. Routh-Hurwitz Criteria. us technique. Construction of Root-loci, Stability Analysis	08
4	Frequency Relationsl	y-response analysis hip between time and frequency response, Polar plots, Nyquist uist stability criterion, Bode plots, Stability margin from Bode	08
5	Introducti P, PI, PD,	on to Controllers and Compensators PID controllers I, Lead-Lag compensators	05
6	Concepts	able Analysis of state variables, State space model, State space solution, function from State Space, stability analysis.	07

	Introduction Nonlinear Control	02	1
7	Nonlinear system–Basic concepts and analysis.		

For Self-study:

- 1) Signals Flow Graph
- 2) Higher order system analysis
- 3) Different forms of state space representations

Text Books:

- 1. Norman Nise, "Control Systems Engineering". Wiley Publication, 4th Edition, 2007
- 2. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India Pvt. Ltd, 5th Edition, 2015.

Reference Books:

- 1. I.G. Nagrath & M. Gopal, "Control Systems Engineering", 5th Edition, New Age, 2007.
- 2. J.J. D"Azzo, C.H.Houpis and S.N. Sheldon, "Linear Control System Analysis and Design with MATLAB", MarcelDekker.
- 3. G.F Franklin, "Feedback Control of Dynamic Systems", Pearson higher Education.

E resources (if any):

https://nptel.ac.in/courses/107106081

Cours	e Code	Course Name		
PC-BTE503		Electrical Machines II		
Course pr	Course pre-requisites Electrical Machines I			
1	i	Course Objectives		
The objecti	ives of this co			
		the principle and operation of generating machine both 1-	phase and 3-	
	phase	trate the behavior of concreting and motoring machine		
		trate the behavior of generating and motoring machine erent operating conditions.		
		trate the principle of fractional kilowatt machine		
		the special types of machines and applications (motors and	d generators)	
		Course Outcomes	<u> </u>	
Upon succe	-	etion of the course, students should be able to		
		trate the fundamental concept of rotating ac machines.		
		the operation and behavior of synchronous machine	connected to	
	power sy		mashing and	
		trate the operation and application of fractional Kw purpose machines.	machine and	
	special p	supose machines.		
	I	Course Content		
Module No.		Details	Hrs.	
	Three Pha	ase Induction Machine:		
	(i) Co	onstruction and principle of operation of		
1	sq	uirrel cage & slip ring Induction motor	00	
1	(ii) Eq	uivalent circuit, phasor diagram, no load and	08	
	blo	ocked rotor test,		
	(iii) Ste	eady state analysis: Torque -speed characteristics,		
	ma	aximum torque, starting torque. Starting methods		
	for	squirrel cage and slip ring induction machines.		
	Synchron	ous Machine:		
	Constructi	on, EMF induced, winding factors, Armature	00	
2	reaction, P	hasor diagrams of cylindrical pole synchronous	08	
	generator a	at different power factor, Methods of voltage		
	regulation of alternator			
		of operation of Synchronous Motor,		
	Various st	arting methods, Power flow and maximum power of		
3	synchrono	us machines, Excitation & power circles, V & O	06	
5	curves, po	ower angle characteristics, synchronizing power and	00	
	torque, hu	nting, synchronous condenser		
4	Operation	on infinite bus for change in excitation for motors and	04	
	generators	, Parallel operation of alternators, Load sharing		
5	Salient po	le machine: Blondel's two reaction theory,	06	
5	Measurem	ent of Xd& Xq, Power flow equation.	00	

6	Fractional kW machines : Construction, principle of operation. And applications of Single phase induction motor, capacitor start,	04
	capacitor run motor, Shaded pole motor. Special purpose Machines:	
7	Construction, principle of operation and applications of Stepper motor and their types, Permanent Magnet Synchronous Motor,	06

Text Books			
1.	Sen P. C., "Principles of Electric Machines & Power Electronics".		
2.	Bimbhra P.S, "Electrical Machinery", Khanna Publisher, VII Edition.		
	Reference Books		
1.	Nagrath and Kothari, "Electrical Machines", TMH Publicatio.		
2.	Bimbhra P.S., "Generalized Theory of Electrical Machines", Khanna Publisher.		
	Gross Charles A., "Electrical Machines", CRC Press		
3.	M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.		

Sr. No.	Examination	Module
1	T-I	1, part of 2
2	T-II	Part of 2,3
3	End Sem	1 to 7

Course	Code	Course Name		
PC-BTI	E504	Power System Analysis		
	Course pre- Electrical Network, Graph Theory, Numerical Techniques			
	requisites			
1***		Course Objectives		
The object	tives of th	is course are		
		student understand symmetrical component method for fault current ca ious types of faults in power system	alculation	
2.	To impart	t knowledge about various load flow analysis techniques.		
	To make s conditions	student realize the need of stability analysis in case of various types of s.	transient	
		Course Outcomes		
At the en	d of the c	course, students will demonstrate the ability to		
		system components and find fault current in case of symmetrical & uns	symmetrical	
faults.				
		and determine the line flows using different computational methods for	or	
		as distribution networks. Succept of steady state stability, its evaluation and its importance		
		ower system behavior under various types of transient conditions.		
1. 7 1141	<u>yze the p</u>	Course Content		
Module				
No.		Details	Hrs.	
1	Repres	entation of power system components & Per unit calculation:	2	
		entation of power system components in Single line diagram,		
		nce diagram, Per Unit method and its advantages.		
2		netrical Components: anced system Analysis using symmetrical components, Power in	4	
	terms	of symmetrical components, Sequence circuits of transmission		
		transformer and Synchronous Machines, Phase shift in star delta		
		ormer, Formation of Sequence Networks		
2	E 14	A	9	
3		Analysis: etrical Fault Analysis: 3 phase fault on a transmission line, Short	9	
	-	MVA Capacity of a bus, 3 phase Short circuit of a synchronous		
		e - steady state, transient and sub- transient equivalent circuits.		
		metrical Fault Analysis: Fault analysis using symmetrical		
	-	nents, Single line to ground (SLG) fault, Line to line (LL) fault,		
	Double	line to ground (LLG) fault, Open conductor fault.		
4		ation of Y _{bus} & Load Flow Studies:	9	
		admittance matrix, Network incidence matrix, Calculation of Bus tance Y_{bus} and Impedance Matrices Z_{bus} ,		
		Flow Problem, Gauss Seidel (GS) method, Newton Raphson (NR)		
		d Decoupled & Fast Decoupled method, Comparison of different		
	load fl	ow methods.		
5		bution Load Flow Analysis:	5	
		phase unbalanced load flow, Backward/forward sweep method, ied Newton Raphson method		
	moun	iou reestion ruphon monou		

6	Power system Stability: Classification of stability, Dynamics of synchronous machine, power angle equation, swing equation, steady state stability- small disturbances, transient stability- Equal Area Criteria.	7
7	Power System Transients: Switching transients, Travelling Wave Phenomena: Travelling wave equations (Telegraphic equations), reflection wave, refraction wave, typical cases of line termination, Bewley Lattice Diagram.	6

For Self-study: Triangular Factorization (LU Decomposition), solution of swing equation using Forward Euler method, Runge-kutta 4th order method

Text Books:

- 1. Saadat Hadi, "Power System Analysis, "TMH Publication.
- 2. Kothari D. P Nagrath I. J., "Modern Power System Analysis", TMH Publications.
- 3. Wadhawa C. L., "Electrical Power Systems", New Age International.
- 4. Grainger John J., Stevenson William D., "Power system Analysis", MC Graw Hill.
- 5. A. A. Sallam and O. P. Malik, "Electric Distribution System", IEEE Press, Piscataway, NJ, 2011.

Reference Books:

- 1. Olle I. Elgerd, "Electric Energy Systems Theory: an Introduction", TMH Publication
- 2. W. H. Kresting, "Distribution System Modeling and Analysis", CRC Press, New York, 2002.

Cours	e Code	Course Name	
PC-B	TE505	Communication Engineering	
Course pro	e-requisites	Signals and Systems, Electronic and Analog circuits, Digital Electron	nics
		Course Objectives	
2. Dis	scuss bandwi	and Digital Communication systems : Implementation and Compariso dth utilization methods puter Network	Dn
		Course Outcomes	
1. Co 2. Use 3. Co	e source and mpare and se	ent analog and digital modulation methods channel coding appropriately. elect different methods for efficient bandwidth utilization types of communication and networks with respect to Computer Netw	vorking
		Course Content	
Module No.		Details	Hrs.
1	Theory of A systems, T	tion to Analog Communication: Amplitude Modulation, Comparison of DSBFC, DSBSC, SSB, ISB heory of frequency and phase modulation and comparison with modulation, Introduction to analog receivers	07
2	Block dia Amplitud Keying	ommunication gram of digital communication system e Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift (PSK), BPSK,DPSK, DEPSK,QPSK, Quadrature Amplitude on (QAM)).	07
3	Modulation,	dulation: Theorem, Pulse Amplitude Modulation (PAM), Pulse Width on (PWM), Pulse Position Modulation (PPM) their generation and Pulse Code Modulation, quantization noise, bandwidth, Delta on, Adaptive delta Modulation	06
4	Guided ar Radio wa	th Utilization: nd unguided media – Twisted pair cable, Coaxial cable, Fiber optic, aves, Microwaves, Infrared waves, Light waves, Multiplexing – PM Spreading – DSSS, FHS	05

	Source Coding	05
5	Information, Entropy, Rate of information, Channel capacity, Shannon theorem, Huffman coding	
	Channel Coding/Decoding	05
6	Linear block code, Cyclic code, Convolution code	
	Introduction to Computer Network	07
	Types of communication (simplex, half duplex, full duplex), types of connections, network topology types	
_	Types of networks: peer to peer and client server networks, network	
7	hardware- transmission technology-broadcast links and point-to-point links and scale–PAN, LAN, MAN, WAN, Interne Network software: protocol	
	hierarchies, protocol, peers, interface, network architecture, protocol stack,	
	Connection oriented and connectionless services, service primitives Reference model: OSI,TCP/IP	

For Self-study: Electronic/Analog and Digital circuits used in different communication systems

Text Books:

- 1. G. Kennedy and B. Davis, "Electronic Communication Systems", 4/e, Tata McGraw Hill, 2011
- 2. Simon Haykin, "Digital Communications", 1/e, John Wiley, India, 2014
- 3. S. Tanenbaum, "Computer Networks", 4th Edition, Prentice Hall, 2012.

Reference Books

- 1. Taub and Schilling, "Principles of Communication Systems", McGraw Hill, Fourth reprint 2009. 2.
- 2. .Roddy and Coolen, "Electronic Communication", 4/e, Pearson Education 2008
- 3. John. G. Proakis, "Digital Communication", 5/e, Pearson Education, 2014
- 4. Herbert Taub and Donald L Schilling," Principles of Communication Systems", Tata McGraw Hill, New Delhi, 2012
- 5. B. F. Ferouzan, "Data and Computer Communication", 4 th Edition, Tata McGraw Hill, 2010.
- 6. William Stallings, "Data and Computer Communication", 10th Edition, 2014

Course Objectives To conduct experiment on calibration of energy meter 2. To understand different in-built Lab view result functions related to signals and system. 3. To validate the theoretical concept Course Outcomes Upon successful completion of the course, students should be able to 1. Understand construction and working principle of various analog instruments. 2. Understand various measurement techniques used for measurement of various parameters. 3. Apply theoretical knowledge to convert analog signal into digital signal. Course Content Module Details No. To measure the energy consumed by load using analog energy 0 1 meter and compare the measurement with static energy meter. 0 Basic moving systems). 0 2 Study of Moving iron, PMMC and Dynamometer type instruments 0 3 To study the working of Megger and carry out measurement of insulation resistance. 0 4 Study of construction of LVDT and measurement of displacement, of force and pressure by using it. 0 5 Measurement of R, L and C Using Different Bridges and on confirmation with analytical calculations. 0 6 Compara	Cours	se Code	Course Name	
Course Objectives The objectives of this course are 1. To conduct experiment on calibration of energy meter 2. To understand different in-built Lab view result functions related to signals and system. 3. To validate the theoretical concept Course Outcomes Joon successful completion of the course, students should be able to 1. Understand construction and working principle of various analog instruments. 2. Understand various measurement techniques used for measurement of various parameters. 3. Apply theoretical knowledge to convert analog signal into digital signal. Course Content Module Details No. To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. 2 Study of Moving iron, PMMC and Dynamometer type instruments 0 3 To study the working of Megger and carry out measurement of insulation resistance. 0 4 Study of construction of LVDT and measurement of displacement, of force and pressure by using it. 0 5 Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations. 0 6 Comparative study of temperature measurement using RTD and thermocouple. 0 7 <td< th=""><th>PC-B</th><th>STE551</th><th>Measurement and Instrumentation Labo</th><th>oratory</th></td<>	PC-B	STE551	Measurement and Instrumentation Labo	oratory
The objectives of this course are 1. To conduct experiment on calibration of energy meter 2. To understand different in-built Lab view result functions related to signals and system. 3. To validate the theoretical concept Course Outcomes Joon successful completion of the course, students should be able to 1. Understand construction and working principle of various analog instruments. 2. Understand various measurement techniques used for measurement of various parameters. 3. Apply theoretical knowledge to convert analog signal into digital signal. Course Content Module Details No. To measure the energy consumed by load using analog energy 0 meter and compare the measurement with static energy meter. Wattmeter. 2 Study of Moving iron, PMMC and Dynamometer type instruments 0 3 To study the working of Megger and carry out measurement of insulation resistance. 0 4 Study of construction of LVDT and measurement of displacement, force and pressure by using it. 0 5 Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations. 0 6 Comparative study of temperature measurement using RTD and thermocouple. 0 7	Course pr	e-requisites	Electronic Circuits and Digital Electronics	
The objectives of this course are 1. To conduct experiment on calibration of energy meter 2. To understand different in-built Lab view result functions related to signals and system. 3. To validate the theoretical concept Course Outcomes Upon successful completion of the course, students should be able to 1. Understand construction and working principle of various analog instruments. 2. Understand various measurement techniques used for measurement of various parameters. 3. Apply theoretical knowledge to convert analog signal into digital signal. Course Content Module Details No. To measure the energy consumed by load using analog energy meter. Wattmeter. 0 2 Study of Moving iron, PMMC and Dynamometer type instruments of insulation resistance. 3 To study the working of Megger and carry out measurement of insulation resistance. 4 Study of construction of LVDT and measurement of displacement, force and pressure by using it. 5 Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations. 6 Comparative study of temperature measurement using RTD and thermocouple. 7 To measure input voltage signal using Voltage to Frequency O Converter using IC 555 8 <			Course Objectives	
2. Understand various measurement techniques used for measurement of various parameters. 3. Apply theoretical knowledge to convert analog signal into digital signal. Course Content Module No. Details Ht 1 To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. Wattmeter. 0 2 Study of Moving iron, PMMC and Dynamometer type instruments (Basic moving systems). 0 3 To study the working of Megger and carry out measurement of displacement, force and pressure by using it. 0 4 Study of construction of LVDT and measurement of displacement, force and pressure by using it. 0 5 Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations. 0 6 Comparative study of temperature measurement using RTD and thermocouple. 0 7 To measure input voltage signal using Voltage to Frequency Converter using IC 555 0 8 Study of Cathode Ray Oscilloscope 0 9 Speed measurement using photoelectric pick up, magnetic pick up and stroboscope. 0 10 circuits by conventional two wattmeter method and by power 2	1. T 2. T 3. T Upon succ	o conduct exp o understand system. o validate the essful comple	burse are periment on calibration of energy meter different in-built Lab view result functions related to signate theoretical concept Course Outcomes etion of the course, students should be able to	
Course ContentModule No.DetailsHiNo.To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. Wattmeter.01To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. Wattmeter.02Study of Moving iron, PMMC and Dynamometer type instruments (Basic moving systems).03To study the working of Megger and carry out measurement of insulation resistance.04Study of construction of LVDT and measurement of displacement, force and pressure by using it.05Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.06Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Keasurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	2. U pa	nderstand var arameters.	ious measurement techniques used for measurement of var	
Module No.DetailsHi1To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. Wattmeter.02Study of Moving iron, PMMC and Dynamometer type instruments (Basic moving systems).03To study the working of Megger and carry out measurement of insulation resistance.04Study of construction of LVDT and measurement of displacement, force and pressure by using it.05Measurement of R, L and C Using Different Bridges and 	3. A	pply theoretic		
1To measure the energy consumed by load using analog energy meter and compare the measurement with static energy meter. Wattmeter.02Study of Moving iron, PMMC and Dynamometer type instruments (Basic moving systems).03To study the working of Megger and carry out measurement of insulation resistance.04Study of construction of LVDT and measurement of displacement, force and pressure by using it.05Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.06Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2				Hrs.
2(Basic moving systems).3To study the working of Megger and carry out measurement of insulation resistance.04Study of construction of LVDT and measurement of displacement, force and pressure by using it.05Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.06Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	1	meter and co		02
3To study the working of Megger and carry out measurement of insulation resistance.04Study of construction of LVDT and measurement of displacement, force and pressure by using it.05Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.06Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010circuits by conventional two wattmeter method and by power2	2			02
4force and pressure by using it.5Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.6Comparative study of temperature measurement using RTD and thermocouple.7To measure input voltage signal using Voltage to Frequency Converter using IC 5558Study of Cathode Ray Oscilloscope9Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.10Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power	3	To study the	e working of Megger and carry out measurement of	02
5Measurement of R, L and C Using Different Bridges and confirmation with analytical calculations.06Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	4	-	-	02
6Comparative study of temperature measurement using RTD and thermocouple.07To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	5	Measuremen	nt of R, L and C Using Different Bridges and	02
7To measure input voltage signal using Voltage to Frequency Converter using IC 55508Study of Cathode Ray Oscilloscope09Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	6	Comparativ	e study of temperature measurement using RTD and	02
8 Study of Cathode Ray Oscilloscope 0 9 Speed measurement using photoelectric pick up, magnetic pick up and stroboscope. 0 10 Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power 2	7	To measure	input voltage signal using Voltage to Frequency	02
9Speed measurement using photoelectric pick up, magnetic pick up and stroboscope.010Measurement of power in three phase balanced and unbalanced circuits by conventional two wattmeter method and by power2	8			02
Measurement of power in three phase balanced and unbalanced210circuits by conventional two wattmeter method and by power2	9	Speed meas	urement using photoelectric pick up, magnetic pick up	02
········	10	Measuremen	nt of power in three phase balanced and unbalanced	2
11 Demonstration of current transformer and potential transformer 0 Term Work	11	Demonstrat	*	02

Text Books
1. Sawhney. A.K., "A course in Electrical and electronics measurements and
Instrumentation" by Dhanpat Rai and Sons 17th edition 2007.
2. T.S. Rathore, "Digital measurement techniques", by Narosa Publishing house
Reference Books
1. Kalsi H.S. "Electronic Instrumentation", Tata McGraw Hill, 3rd edition 1997.
2. Doeblin E.O, "Measurement system application and design", Tata McGraw Hill, 4 th edition 1990

Course Code		Course Name		
PC-BTE 552		Control System Laboratory		
	se pre-			
req	uisites			
1 Model 1	noon time inv	Course Objectives	antationa	
		ariant systems using transfer function and state- space repre- Linear Time Invariant system in time domain and in freque		
		for system analysis	ncy domain	
		Course Outcomes		
Upon succ	essful comple	tion of the course, students should be able to		
		variant systems using transfer function and state-space repre-	sentations.	
		Linear Time Invariant system in time domain and in freque	ncy domain	
3. Use sof	tware and/or h	ardware tools for the analysis of system and controllers		
	List	of suggested experiments (Simulation / Hardware based))	
Module No.		Suggested topics	Hrs.	
1	Mathematica Motor)	al Modeling of a Physical System (Speed Control of a	02	
2	Mathematica	al Modeling and Analysis of RLC Network	02	
3	First order s	ystem analysis	02	
4	Second order	r system analysis	02	
5		system approximation with second order system	02	
6	Analysis of	Under-damped systems	02	
7		o location on the performance of second order system	02	
8		am Reduction	02	
9	Root Locus		02	
10	Bode Plot 02		02	
11	Nyquist Plot		02	
12	* 1	and D in a PID Controller (Simulation)	02	
13	State Space	analysis	02	
14		System Analysis	02	
15	Synchro – T		02	
16		and D in a PID Controller (Hardware)	02	
			02	

For Self-study:

Software required for simulation.

Study of any one application where control system is used.

Text Books:

- Norman Nise, "Control Systems Engineering". Wiley Publication, 4th Edition, 2007
 Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India Pvt.Ltd, 5th Edition, 2015.

Reference Books:

- 1. I.G. Nagrath & M. Gopal, "Control Systems Engineering", 5th Edition, New Age, 2007.
- 2. J.J. D"Azzo, C.H.Houpis and S.N. Sheldon, "Linear Control System Analysis and Design with MATLAB", MarcelDekker.
- 3. G.F Franklin, "Feedback Control of Dynamic Systems", Pearson higher Education.

E resources (if any):

https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe

https://github.com/MathWorks-Teaching-Resources/Virtual-Controls-Laboratory

https://ee32-iitb.vlabs.ac.in/#

https://asnm-iitkgp.vlabs.ac.in/exp/rlc-series-circuit/procedure.html

http://ebootathon.com/labs/beta/ec/ControlSystem-I/exp1/

http://ebootathon.com/labs/beta/ec/ControlSystem-I/exp2/

http://ebootathon.com/labs/beta/ec/ControlSystem-I/exp4/

http://ebootathon.com/labs/beta/ec/ControlSystem-I/exp5/

Course	e Code Course Na	ume	
PC-E	BTE553 Electrical Machines	II Laboratory	
Course pre	e-requisites Electrical Mac	chines I	
771 1 '	Course Objectives		
The obj	ectives of this course are 1. To perform load test on three phase induction mot	tor	
	2. To observe the effect of rotor resistance and suppl		speed
	characteristic of induction motor	.,	· · · · ·
	3. To study and evaluation of Voltage Regulation for	• •	
	4. To conduct experiment to draw V and inverted V	•	ous motors.
	5. To calculate Xd and Xq of a salient pole synchron		
	Course Outcomes		
Upon	successful completion of the course, students should		
	 Analyze the characteristics of induction mot load parameters. 	for with variation if	i supply and
	2. Understand the voltage regulation in cyli	indrical pole and	salient pole
	synchronous generator and different methods		suitent por
	3. Analyze the V curve and inverted V-curve		motor unde
	various load conditions.	,	
	Course Content		
Module No.	Details		Hrs.
1	To perform load test on 3 Phase Induction Motor		2
2	To study the effect of rotor resistance characteristic of 3 Phase Induction Motor.	on torque speed	2
3	To study the effect of supply voltage on characteristic of 3 Phase Induction Motor.	torque speed	2
4	Voltage Regulation of synchronous generator method	by EMF/MMF	2
5			
	Voltage Regulation of synchronous generator by	ZPF method	2
6	Voltage Regulation of synchronous generator by Voltage Regulation of synchronous generator AS		2
6 7		SA Method	
7 8	Voltage Regulation of synchronous generator AS	SA Method	2 2 2
7	Voltage Regulation of synchronous generator AS Voltage regulation of synchronous generator by o	SA Method direct loading	2
7 8	Voltage Regulation of synchronous generator AS Voltage regulation of synchronous generator by o Slip Test on salient pole synchronous generator	SA Method direct loading nchronous motor	2 2 2
7 8 9	Voltage Regulation of synchronous generator AS Voltage regulation of synchronous generator by o Slip Test on salient pole synchronous generator V-curves and inverted V- Curves F-curves of syn	SA Method direct loading nchronous motor	2 2 2 2 2

12.	Effect of capacitor on the operation of source power factor (for I.M. load/ Transformer load)	2
	Work: Term work shall comprise of Practical Examination/ MCQ nation/Mini project	
	Text Books	
1.	Sen P. C., "Principles of Electric Machines & Power Electronics".	
2.	Bimbhra P.S, "Electrical Machinery", Khanna Publisher, VII Edition.	
	Reference Books	
1.	Nagrath and Kothari, "Electrical Machines", TMH Publicatio. 5.	
2.	Bimbhra P.S., "Generalized Theory of Electrical Machines", Khanna Publisher	
3.	Gross Charles A., "Electrical Machines", CRC Press	
4.	M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS Londo	n.

Course Code	Course Name		
PC-BTE554	PC-BTE554 Power System Analysis Laboratory		
Course pre-requisi	Course pre-requisites Basic knowledge of programming, familiar with Engineerin software such as MATLAB, Scilab		
	Course Objectives		
Objectives of this co	, , , , , , , , , , , , , , , , , , ,		
-	n using Engineering software such as MATLAB/ Scilab/ETA ol, PANDA power)/ OpenDSS/Gridlab-D	AP/Python	
2. Develop pro	gramming skill.		
	he behaviour of the power system under symmetrical and unsy on using symmetrical components.	mmetrical	
4. Use different	numerical techniques to study load flow as well as transient stat	oility.	
	Course Outcomes		
-	npletion of the course, students should be able		
	Engineering software for power system studies.		
2. Evaluate fau system.	t current under symmetrical and unsymmetrical fault conditions	s in power	
3. Develop algo	writhm for load flow studies and infer the results.		
4. Analyse pov	ver system behaviour under small disturbance as well as a	fter large	
disturbance a	disturbance and interpret the results.		
	List of Experiments		
Expt. No.	Details	Hours	
line and	on of typical power system- familiarization with generator, load models.	2	
2 Simulat system.	on and analysis for a symmetrical three phase fault in a power	2	
•	f transient behaviour of synchronous machine under three ort circuit at the terminal.	2	
4 Simulat power s	on and analysis of unsymmetrical fault - LL, LG and LLG in a ystem.	2	
5 Develop	a program to calculate Y bus matrix.	2	
	on of Ybus matrix using methods such as Gauss ion/Kron's elimination /LU decomposition.	2	
7 Develop	a program to study load flow using Gauss Siedel method	2	
	on of Load flow results of Gauss Siedel method with Newton method using ETAP.	2	

9	Unbalanced Load flow analysis in distribution system	2
10	Study of effect of neutral grounding on earth fault current in a power system.	2
11	Study of Power swing equation for a two machines system in ETAP.	2
12	Analysis of small disturbance stability of a single machine connected to infinite bus.	2
13	Develop a program to find numerical solution of power swing equation.	2

Term work

Note: The laboratory work will consist of minimum Six experiments from the above list and/or any other experiment based on the prescribed syllabus of power system Analysis. Further, a Mini project or few more experiments (minimum 2) based on PSA course needs to be completed. The Instructor is expected to ask the students to manually verify the results wherever possible, so that students can have practice of solving examples. Also, more examples can be given for practice at home. Students can write program in MATLAB/Scilab or they can convert MATLAB/Scilab code to Python.

Resources required: Minimum 20 users License software MATLAB and/ OR ETAP/ Scilab/ Python (Py-power tool, PANDA power)/ OpenDSS/Gridlab-D

Text Books

- 1. Kothari D. P Nagrath I. J., "Modern Power System Analysis", TMH Publications.
- 2. Wadhawa C. L., "Electrical Power Systems", New Age International.
- 3. Stevenson W.D., "Elements of Power System Analysis", TMH Publication.
- 4. Saadat Hadi, "Power System Analysis, "TMH Publication.
- 5. MATLAB / Scilab Manual, ETAP Manual
- 6. Dr. K. Rajamani & Co Authors, "Monograph of IEEMA articles of Dr. K. Rajamani", ieema journal

Reference Books

- 3. Prabha Kundur, "Power System Stability and Control", TMH Publication.
- 4. Olle I. Elgerd, "Electric Energy Systems Theory: an Introduction", TMH Publication
- 5. MATLAB/Scilab online Tutorials
- 6. ETAP webinars

Course Code		Course Name	
PE-BTE 501		Design of Power Electronics Converters	
Course pre- requisites Power Electronics			
		Course Objectives	
2. Uno	derstand Sim	tant concepts needed to design proper power electronic hardy ulation tools, proper designing of power PCB.	ware.
3. Des	sign of power	r electronics converter components	
1 4	1 1'00	Course Outcomes	<u>c</u>
elec 2. Des	ctronics devices ign magnetic	nt power electronics converters and Demonstrate selection of ces and gate driver circuits cs, snubber and heat sink circuits for converters r electronic converters with minimum EMI and EMC	r power
Module		Course Content	
No.		Details	Hrs.
1	Analysis of Buck Con	of power electronic converters of Buck Converter, Choosing L and C, Design Example of verter, Analysis of H Bridge, Bipolar PWM, Unipolar polar vs Unipolar PWM	6
	Power semiconductor devices		6
		types of power diode, Diode characteristics, Diode s, Diode Datasheet Examples, MOSFET, Switching	
2		stics of MOSFET, MOSFET Datasheets-I, MOSFET	
		example, IGBT, IGBT Datasheets, IGBT Datasheet	
	Example		
	Gate driv	ers	7
		on to Gate Drivers, Gate Driver Requirements, Opto-	
3		ased Gate Drivers, Desat Protection, Bootstrapping, Pulse	
	Transform	er based Gate Drivers, Gate Drivers - Few Other	
	Requireme	ents	
	Snubber	design	6
	Introduction	on to Snubbers	
4	RC Snubb	er Analysis, Underdamped Case, Overdamped and	
	Critically	Damped Case	
	RC Snubb	er Design, RCD Snubbers,	
5	Thermal	Design	5
5	Power Los	ss, Thermal Modelling, Choosing Heat Sink	
	Magnetic	6	7
	Fundamen	tals, Magnetic Losses, Conductors, Magnetic Materials,	
6	Magnetic	Core, Inductor Design, Transformer Design, Inductor	
	-	ample, Example of Transformer Design	
	design of	particular converter for the given ratings	

	Electromagnetic interference in power electronic converters	5
7	Introduction to EMI, EMI Measurements, EMI in Power Electronics,	
	CM and DM noise, Design Solutions of EMI, EMI Filter	

E resources: <u>https://onlinecourses.nptel.ac.in/noc23_ee38</u>

	Text Books
1.	Mohan, Undeland and Riobbins, 'Power Electronics Converters, Applications and Design'. Wiley student third edition. (2022)
2.	Muhammad Rashid, 'Power Electronics, Circuits, Devices and Applications'. Pearson, fourth Edition (2017).
3.	Daniel Hart, 'Power Electronics'. McGraw Hill, Indian Edition. (2017)
4.	L. Umanand, 'Power electronics essentials and applications' Wiley India (2009)
5.	Soumitra Kumar Mandal, Power Electronics. McGraw Hill Education (2014)
6.	Bimbra P.S. 'Power Electronics'. Khanna Publishers (2018)
	Reference Books and standards
1.	B. K. Bose, 'Power Electronics and AC Drives', Pearson (2001)
2.	P.C. Sen, 'Principles of electrical machines and power electronics', Wiley India (2013)
3.	IEEE-519-2014 Harmonic control standard in Electric power

Cours	e Code	Course Name	
PE-BTE502		Sensors and Actuators	
Course pr	e-requisites	Basic understanding on measurements, measuring instrumen and digital electronics.	ts, analog
		Course Objectives	
The object	ives of this co		
thei 2. Fan sen var 3. Und pro	ir types, work niliarizing wi sors, flow se ious industrie derstanding the per calibratio Developing s	he calibration of sensors and instrumentation and the signifing n for accurate measurements skills to select sensors and instrumentation systems for	pressure ations in cance of
	application	Course Outcomes	
able to 1. Ide 2. Inte	ntify the key erpret specific	etion of the course, students should be component of sensor and actuator system. cations and characteristics of different sensors and actuators. priate sensor for different applications.	
		Course Content	
Module No.		Details	Hrs.
1	elements,	on sensors and transducers, various primary sensing active and passive transducers, Input-output configuration nents and measurement system, choice and economics of	04
2	Measurem Measurem RTD, Cor Motion ar strain gas Measurem	nent of Temperature and motion ent of temperature using Thermistor, Thermocouple & neept of thermal imaging. Introduction to motion sensor, and dimensional measurement by resistive potentiometer, uge, LVDT, Piezoelectric transducer and Synchros. ent of translational and rotational velocity by tachometer scopic method.	07
3	Measuren Introductio electromag meter, wat measureme	nent of flow and pressure on to flow measurement, Measurement of flow by gnetic flow meter, hot-wire anemometer, Doppler flow ter flow measurement, blood flow measurement, gas flow ent. Introduction to pressure sensor, measurement of using diaphragm Gauge, McLeod Gauge and ionization	07

	Biosensors and Bio-Chemical Sensors	05
4	Introduction to biosensors, introduction to chemical sensors, pH-	
	sensor, blood-glucose sensor, alcohol sensor.	
5	 Micro and smart sensors: Introduction to Microsystems, MEMS, Micro-fabrication, Micro pressure sensor, micro-accelerometer, micro-biosensors, Nano-particle based sensors. Smart sensors Characteristic of smart sensor: self-calibration, self-testing, & self-communicating, Application of smart sensors: Automatic robot and automobile engine controls Introduction to sensor-less systems 	08
6	Actuators : Electric actuators: Motors (DC, AC, stepper), solenoids, Electromagnetic actuators: Relays, contactors, Piezoelectric actuators, Hydraulic and pneumatic actuators	06
7	Application of sensors and InstrumentationCase study of any process industry e.g. Power industry, automationindustry, Sensor networks.	05

Text Books:

- E.O. Doebelin, "Measurement System: Application and Design", 4th Edition, McGraw- Hill publication, 1990
- 2. D. Patranabis, "Sensors and Transducers", 2nd Edition, PHI publication, 2003
- **3.** Clarence W. de Silva , "Sensors and Actuators: Engineering System Instrumentation", 2nd Edition, CRC Press, 2015
- Douglas A. Skoog, F. James Holler, and Stanley R. Crouch "Principles of Instrumental Analysis" 7th Edition, Cengage India Pvt. Ltd., 2020

Reference Books:

- 1. R.P. Areny and J.G. Webster, "Sensors and Signal Conditioning", 2nd Edition, Wiley-Inter Science, 2000.
- 2. Ian Sinclair, "Sensors and Transducers", 3rd Edition, Elsevier Publication, 2011.
- 3. Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 4. John G. Webster, "Medical Instrumentation Application and Design", 4th Edition, Wiley publication, 2015

Sr No.	Name of the exam	Total marks	Modules
1	T-I	20	1,2,3
2	T-II	20	3,4
3	End semester examination	100	1-7

Evaluation:

C	Course Code		
]	PE-BTE503	Digital Signal Processing	
Cours	se pre-requisites	Signals and Systems	
		Course Objectives	
1.	Discuss time domain a	and frequency domain analysis of discrete time systems	
2.	Explain Fast Fourier T	Fransform algorithms to evaluate Discrete Fourier Transf	form
3.	Discuss design of IIR		
		Course Outcomes	
	ill be able to	1 1 /	
	ssify Discrete Time signaluate system response	nais and systems using time and frequency domain Analysis to different in	nnut
signals.	aluate system response	using time and frequency domain Analysis to different h	iiput
-	mpute DFT using FFT		
4. De	esign of IIR and FIR filt		
14 1 1		Course Content	
Module No.		Details	Hrs.
140.	Digital Signals and	Systems:	06
	0 0	ation of signals on orthogonal basis; Signal	
		sentation of discrete systems using difference	
1	_	assification, Sampling and reconstruction of signals -	
		eorem and Nyquist rate, Linear convolution concept	
	Z Transform		06
	z-Transform, Region	of Convergence, Analysis of Linear Time Invariant	
2	systems using z trar	nsform, Properties of z-transform for causal signals,	
	Interpretation of stab	ility in z-domain, Inverse z-transforms	
l			
	Discrete Fourier Tr	ansform	06
	Frequency Domain	Analysis, Discrete Fourier Transform (DFT),	
	Properties of DFT,	Circulation convolution, comparison between linear	
3	and circulation conv	volution,, Circulation convolution using DFT / IDFT,	
	Response of LTI s	ystem (linear convolution or linear filtering) using	
	circulation Convoluti	ion, using DFT / IDFT	
	Fast Fourier Transf	form	06
		outation complexity of direct computation of DFT and	
4		cimation in Time and Decimation in Frequency	
-	algorithms, IDFT usi		

5	IIR Filter Design Introduction, Designing of analog IIR filters using Butterworth and Chebyshev approximations, Analog to analog spectral transformations, Designing of IIR digital filters using impulse invariance, bilinear transformation and matched Z transform methods, stability properties.	07
6	FIR Filter Design Introduction: Linear Phase FIR Filters, Frequency response of different types of linear phase FIR Filters, Locations of definite zeros of different types of FIR Filters. Designing of FIR filters using windowing technique, Gibbs Phenomenon (Hamming, Hanning, Rectangular, Bartlett, Kaiser window functions), Designing of FIR filters using frequency sampling technique,	08
7	Applications of Digital Signal ProcessingCorrelation Functions and Power Spectra, Stationary Processes, Optimalfiltering using, ARMA Model, Linear Mean-Square Estimation, WienerFilter.	03

For Self-study Quantization and realization structures

Text Books:

- 1. John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, PHI, 2000
- 2. Alan Oppenheim and Ronald Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall

Reference Books

- 1. Richard G. Lyones, Understanding Digital Signal Processing, 1/e, Prentice Hall, 1996
- 2. Antoniou, Andreas, Digital Filters: Analysis, Design And Signal Processing Applications, Mc GrawHill

Environmental Science

Course Code		Course Name	
MC-BTE003		Environmental Science	
Course pre-requisites			
The object	ives of this co	Course Objectives	
5		to the ever-increasing environment problems.	
		nowledge about environmental pollution.	
		nowledge with respect to renewable energy and its	
	positive imp	act on environment.	
4		of the national and international concern for	
	environment	t for protecting the environment.	
TT	<u>(1)</u>	Course Outcomes	
-	-	tion of the course, students should be able to	/ 1 1
1		the requirement of environment science and sustainabilities of electrical engineering	ty and apply
		eld of electrical engineering ecifications to comply with norms of environment engine	oring
		ws and regulations pertaining to health, safety and enviro	-
		uation tool such as GRIHA to help design, build,	innent
-		d maintain a resource efficient environment	
	manageme		
	manageme	Course Content	
Module			11
No.		Details	Hrs.
		ion to Environmental Science and Pollution: Biotic	05
		c Environment, Adverse effects of environment, Types	
1		mental pollution	
		Water pollution, Air pollution, Solid waste nt, Control Strategies of different environmental	
	problems	in, control strategies of different environmental	
		on to Renewable Energy: Solar, Wind, Geothermal,	07
2		al), Biomass–Basics, Conservation of natural	
2		Invironmental and economic impact of each type of	
		nergy, Energy Management	~ ~
		ity and Sustainable Energy Management:	06
3		to Sustainaility, sustainable strategies, Sustainable	
	-	s, green commodities, Carbon credits, carbon emission introduction to energy audit	
	U .	Assessment, Prevention, and Control: Stress and	05
		fety and Health Training, Mechanical Hazards and	<i></i>
4		afeguarding, Fire Hazards and Life Safety, Ethics and	
4		azard Analysis/Prevention and Safety Management,	
	Environme		
	Manageme	ent).	

	Introduction to National Rating System GRIHA (Green Rating	05
5	For Integrated Habitat Assessment): An evaluation tool to help	
	design, build, operate, and maintain a resource-efficient built	
	environment. Case studies of GRIHA registered buildings	

Text Books					
1. Jagdish Krishnawamy, R J Ranjit Daniels," Environmental Studies", Wiley India					
Private Ltd. New Delhi. 4. An Indita Basak, Environmental S					
Reference Books					
1. GRIHA Manual Volume 1 - Ministry of New and Renewable					
Energy, Government of India, New Delhi.					
2. ISO 14001:2004(E) - Environmental management systems					
Requirements with guidance for use.					

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	1 to 7

Bharatiya Vidya Bhavan's

(Government Aided Autonomous Institute under Mumbai University) Andheri (W), Mumbai – 400058

COURSE CONTENTS

Sem. VI

T. Y. B.Tech. (ELECTRICAL) ENGINEERING

Academic Year: 2024-2025

List of Courses

PC-BTE601 Power System Operation & Control
PC-BTE602 Electrical Drives
PC-BTE603 Switchgear and Protection
PC-BTE651 Power System Operation & Control Laboratory
PC-BTE652 Electrical Drives Laboratory
PC-BTE653 Switchgear and Protection Laboratory
PE-BTE601 Renewable Energy Sources
PE-BTE602 Design and Management of Electrical Systems
PE-BTE603 Electrical Machine Design
PE-BTE604 Control System Design
PE-BTE611 Basics of Automotive Systems
PE-BTE612 Micro-grid and Distributed generation
PE-BTE613 Digital Control Design
OE-BTE601 Power Plant Engineering
OE-BTE602 VLSI Circuits
OE-BTE603 Linear Algebra and Matrix Computation
OE-BTE604 Computer Architecture
OE-BTE605 Project Management
PR-BTE601 Project Stage I
SK-BTExxx Skill based Courses
VA-BTExxx Value Added Courses

Course	Code	Course Name		
PC-BTE	E601	Power System Operation & Control		
Course j requisi		Power system modelling and Power system Analysis		
104000		Course Objectives		
The objec	tives of	this course are		
2. 3.	To impa and volt To make	e student understand various equipment constraints in operation of power s art knowledge about modelling of controllers required in power system for age control e student realize the need of centrally monitoring of large power system w advance techniques such as PMU & WAMS	power	
		Course Outcomes		
2. Eval flow in a po 3. Form	uate and ower sys nulate & erstand r	find optimal generation for given power system. recent trends in centrally monitored grid system as well as distributed gene		
		Course Content		
Module No.		Details	Hrs.	
1	Gener capab	oment and Stability Constraints in System Operation: rator constraints, generator capability curves, Power transmission ility of transmission line, thermal limit curve & loadability curves of mission line.	4	
2	Relat trans Load Gene	ve Power & Frequency Control: tionship between generator rotors' speed and 'system frequency' during ients. Calculation of system frequency, Frequency dependence of loads, I Frequency Control (LFC) of an isolated power system, Automatic eration Control (AGC) in a single area system, AGC in multi-area em, Tie line bias control,	6	
3	Gene contr syste stabi	ctive Power & Voltage control: eration and absorption of reactive power, basics of reactive power rol, Automatic Voltage Regulator (AVR), brushles AC excitation em, block diagram representation of AVR loop, Excitation system lizer with rate feedback & PID controller chronous Machine as a condenser for grid stability	6	

4	Power transmission & control in the transmission line : power transmission in uncompensated transmission line , P-V curve, P-Q curve of transmission line under various loading conditions, real Power flow control using series capacitor, TCSC, phase angle regulator (phase shifting transformer), using embedded HVDC link, methods of reactive power injection – tap changing transformer, SVC (TCR + TSC) and STATCOM for voltage control.	9
5	Optimal Dispatch of Generation: Optimal dispatch neglecting generator limits and line losses, Optimal dispatch with generator limits, Optimal dispatch with line losses.	6
6	Preventive, Emergency & Restorative Control: Operating states and control actions in a power system, Role of Load Dispatch Center (LDC), system monitoring, data Acquisition and controls using PMU & WAMS, System hardware configurations, SCADA & EMS functions, introduction to state estimation problem. Preventive control: Generation rescheduling, Load tripping, Emergency control: Under- frequency load tripping, generator tripping, system islanding, Restorative control, definition of blackout	8
7	Modern Trends in Power System Monitoring & Control: Introduction to Smart Grid, Distributed Generation, Micro-Grid and challenges in Grid Integration, Micro-PMUs for distribution systems.	3

For Self-study: unconstrained, constrained optimization techniques.

Text Books:

- 6. Saadat Hadi, "Power System Analysis, "TMH Publication.
- 7. Kothari D. P Nagrath I. J., "Modern Power System Analysis", TMH Publications.
- 8. Prabha Kundur, "Power System Stability and Control", TMH Publication.
- 9. Olle I. Elgerd, "Electric Energy Systems Theory: an Introduction", TMH Publication

Reference Books:

- 1. Chakrabarti .A, Halder.S, "Power System Analysis-Operation and Control", PHI
- 2. Hingorani N.G., "Understanding of Facts", Wiley Publications.

E resources (if any):

Power Systems Operation and Control, Dr. A.M. Kulkarni, IIT Bombay, https://nptel.ac.in/courses/108101040

Course Code		Course Name	
PC-BTE602		Electric Drives	
Course	Pow	ver Electronics and Electrical Machines	
pre-requisite			
		Course Objectives	
		ntals of electric drives and their control through	1
	-	l machines and power electronics	
	•	ics, selection, braking and control of AC/DC drives.	
	cuss applications of	•	4
4. UI	derstand the selection	on of motor as per the torque-speed characteristics of loa Course Outcomes	<u>ia.</u>
1 4 -	alves the fundamen		
	-	tal concept of electrical drives system.	
	ect and analyze the the mechanical characteristics the mechanical characteristics and the second sec	control of electrical drive for the particular application racteristics of load	based
		erformance of DC and AC drives using conventional and	l solid
sta	e drive		
Module			
No.		Details	Hrs.
	Introduction:		
1	•	Electrical Drives, Parts of Electrical Drives,	04
		ical Drives, Status of DC and AC Drives	
	•	Electrical Drives: Fundamental torque equations,	08
		onventions and multi quadrant operation, Equivalent e parameter, Measurement of moment of Inertia,	08
2		load torque, Nature and Classification of load torques,	
-	-	Fime and Energy-Loss in transient operation, Steady	
		oad equalization.	
3		of motor for heating and cooling, Classes of	04
5		etermination of motor rating.	7
	Control of Elec		
4		tion, Speed control drive classification, Closed	04
	loop control of c	drives. Speed sensing, current sensing, Phase	
	locked loop cont	trol	
	DC Drives:		
5		relations for shunt, series, and separately excited	08
		, Braking (Regenerative, Dynamic and Plugging),	
	-	Armature voltage, Field flux, Armature resistance), oltage control (Ward Leonard scheme, Controlled	
		rolled rectifier fed DC drives (separately excited	
		phase fully-controlled rectifier, Single phase half-	
	• • • •	ier, three phase fully-controlled rectifier, three phase	
	half controlled	rectifier, dual converter control, Chopper control	
	(motoring and	braking of separately excited)	

	AC Drives:	
	Induction motor drives, Review of speed-torque relations,	08
	Review of starting methods, Braking (Regenerative,	
	Plugging, AC/DC Dynamic braking),	
6	Speed control: Stator voltage control variable frequency control	
	from voltage Source (V/F Control), Wound rotor induction motor	
	control, rotor resistance control, Slip power recovery scheme, State	
	Kramer and Scherbius drive, Vector control (elementary treatment	
	only), Introduction to Synchronous Motor variable speed drive	
	Special Motor Drives: Stepper motor drives, Types, Torque v/s	
7	stepping rate characteristics, Drive circuits, Introduction to Brush-	06
	less DC drives, Introduction to Switched reluctance drives. Solar	
	and Battery Drives, Recent trends in Electric Drives.	

For Self-study: Three phase rectifier (half control and full control), Separately excited DC motor speed control using chopper, Stepper motor drives, Types, Torque v/s stepping rate characteristics

E resources:

Text Books		
1. G. K. Dubey, "Power Semiconductor Controlled Drive	s", Prentice Hall	
2. R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall.		
Reference Books		
1. G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press.		
2. W. Leonhard, "Control of Electric Drives", Springer Science & Business Media.		
3. Subrahmanyam V, Electrical Drives: Concepts and Applications TMH		
4. Pillai S.K, A First course on Electrical Drives Wiley Eastern PH		
Sr. No. Examination	Module	

Sr. No.	Examination	Module
1	T-I	1, 2
2	T-II	3,4, part of 5
3	End Sem	1 to 7

Course	e Code	Course Name		
PC-B	TE603			
Course pre	re-requisites Basics of power system, fault analysis			
•	•			
Course Objectives 1. Understand Art & Science of Relaying Technology 2. Explore design and working principles of various Circuit Breakers 3. Study different types of protection philosophies and their applications for various power apparatus protection. 4. Get familiar with modern protection techniques. Course Outcomes Upon successful completion of the course, students should be able to 1. Understand basics of different components of protection system such as relays, CT, PT				
 etc. 2. Refer and apply various national, international standards such as IEEE, ANSI standards. 3. Select suitable components and co-ordination of protection devices for specific power apparatus protection. 4. Suggest and compare various circuit breakers for specific application. 5. Appreciate the need for new trends in switchgear technologies. 				
		Course Content		
Module No.		Details	Hrs.	
1	Basics of protection8Protective zones. Attributes of relays, Primary and back up8protection, remote and local back up, Desirable qualities.8Introduction to CT and VT7Typical relays: Electromagnetic type, static type and NumericalRelay Architecture.Principle and characteristics of:Over current Relays - Time setting, plug setting, Differentcharacteristics like IDMT, very Inverse etc., Directional Relay,Distance Relay- Reactance, Impedance, MHO relay, DifferentialRelay, Earth Fault Protection.Introduction to various IEEE Standards and Testing Practices:IEEE 242-2001: IEEE recommended Practice for protection andcoordination of Industrial and commercial power systems.ANSI/IEEE standard C37.2 : ANSI standard Device NumbersRelay testing: Type tests, commissioning & acceptance tests, Routine maintenance (periodic) tests.			
2	protection a for various	of Transmission lines & feeders- over current nd relay coordination, application of directional relays feeder arrangements. Distance relay application, ays under load encroachment and power swing, Pilot	8	

3	 Protection of Transformer, Generator and Motor: The problems and hazard in transformer, Differential relay for 3 phase transformer winding protection, Magnetizing inrush, Restricted Earth fault protection, Buchholz relay. Protection of Generator-The problems and hazard in generator, Differential protection for stator faults, Protection against loss of prime mover and loss of excitation, field suppression, out of step protection. Motor Protection- The problems and hazards in Induction motor, Protection against single phasing, Thermal over load and short circuit protection using Type 2 coordination, Under voltage protection, Synchronous motor protection. Busbar Protection- Different bus arrangements with breakers, Ring bus arrangement, One and a half breaker arrangement and High impedance bus differential relay 	8		
4	 Principles of Circuit Braking: D.C and A.C. circuit breaking, arc voltage and current waveforms in an A.C. circuit., Definition of transient recovery voltage, rate of rise of TRV, ratings and specifications of circuit breakers, making and breaking capacity Basics of Arc Extinction: Ionization of Gases, Deionization, Arc Formation in AC Circuit Breakers, Modes of Arc Extinction, Arc Interruption Theories 	4		
5	 Low Voltage & High Voltage Circuit Breakers L.V. C.B. Air Break C.B., MCB, MCCB, HRC fuses, Metal Enclosed Switchgear, Control Gear and Contactor: Construction, operation, types, selection and application. H.V.C.B. Air break, Air blast, vacuum, minimum oil and bulk oil, SF6 Circuit Breaker: Operation, types, selection and application. 	6		
6	Protection against Over Voltage Surges : Lightening phenomenon, over voltages due to lightning, different types of lighting arresters, Insulation Co-ordination between different devices, BIL.	4		
7	 Modern Protection Practices: Need of 'system' protection, communication based substation monitoring & control, IEC 61850 standard. Idea of situational awareness, WAMS based protection schemes, various Adaptive relaying techniques. Protection Issues in Micro-grids. SF6 Insulated Metal Clad Switchgear – Sub Station (GIS) 	4		
Text Books				
Edu	Education, Second Edition			
2. Y.C	2. Y.G. Paithankar. Transmission Network Protection. Marcel Dekker, Inc			

- 3. Bhuvanesh Oza, Nirmal Kumar Nair, Ramesh Mehta and Vijay Makwana. Power system protection and switchgear. MacGraw Hill.
- 4. B. Ravindarnath, M. Chandar. Power system Protection and switchgear. New age Int. Ltd.
 Reference Books 1. Blackburn, LL. Applied Protective Poloving, Westinghouse Electric Corporation, New Yor
 - 1. Blackburn, J.L., Applied Protective Relaying, Westinghouse Electric Corporation, New York, 1982.
 - 2. Phadke, A.G. and J.S. Thorp, Computer Relaying for Power Systems, Research Study Press Ltd, John Wiley & Sons, Taunton, UK, 1988

E resources (if any):

Power System Protection, Dr. S. A. Soman, IIT Bombay https://nptel.ac.in/courses/108101039

Sr. No.	Examination	Module
1	T-I	1, Part of 2
2	T-II	Part of 2, 3
3	End Sem	1 to 7

Cours	a Coda	Course Name			
	BTE651 Power System Operation & Control Lab				
	Basic knowledge of programming, familiar with Engineering software such equisites as MATLAB or Scilab				
Iequ	isites	as MATLAB or Scilab Course Objectives			
Objectiv	ves of this	course are			
		y in using Engineering software.			
		amming skill.			
		power and voltage relation of the transmission line with different	t receiving		
end	conditions).			
4. To s	tudy diffe	rent methods of controlling and monitoring power system parame	eters.		
TT	0.1	Course Outcomes			
		completion of the course, students should be able	nomer and		
	suitable l	Engineering software and Develop complex algorithm to solve	e power system		
· ·		of variation of load on voltage profile & reactive power requirem	nent of the line.		
		ompare suitable methods to control power system parameters t			
	ility.				
		e importance of central monitoring and control of the power sys	tem to maintain		
stabi	ility in the	List of Experiments			
Expt.		-			
No.		Details	Hours		
1	•	complex power flow through a single-phase transmission	2		
	line with	ideal AC voltage sources connected at each end.			
2	To valida	ate Ferranti effect on an unloaded transmission line.	2		
3	2	fect of Tap changing transformer on voltage levels in a	2		
4	power sy		2		
4	Study of	P-V curve and P-Q curve.	2		
5	Study of	shunt reactive power compensation with static VAR	2		
5		STATCOM, synchronous condenser etc.	2		
	<i>ue (1665,</i>				
6	Study of	series compensation and hence the performance of the line.	2		
7		e effect of load frequency control (LFC) on an isolated	2		
	power sy	stem using SIMULINK/ETAP			
8	Ctr. dr. 41-	α offset of sutematic constant (ACC) or α	2		
0		e effect of automatic generation control (AGC) on an power system using SIMULINK/ETAP	Ź		
9		Tect of tie line transmission limit on two area system using	2		
	-	NK/ETAP	2		
	~				
10	Study of	automatic voltage regulator (AVR) using	2		

	SIMULINK/ETAP	
11	Program on optimal dispatch of generation	2
12	Study of configuration of Phasor Measurement Units and Wide Area Measurement System.	2
13	Study of Post fault Oscillation Monitoring using WAMS.	2

Term Work

Note: The laboratory work will consist of minimum Six experiments from the above list and/or any other experiment based on the prescribed syllabus of power system Analysis. Further, a Mini project based on NPTEL course or few more experiments (minimum 2) based on PSOC course needs to be completed. The Instructor is expected to ask the students to manually verify the results wherever possible, so that students can have practice of solving examples. Also, more examples can be given for practice at home. Students can write program in MATLAB/Scilab or they can convert MATLAB/Scilab code to Python.

Resources required: Minimum 20 users License software MATLAB and/ OR ETAP/ Scilab (open source software)

Text Books

- 1. Kothari D. P Nagrath I. J., "Modern Power System Analysis", TMH Publications.
- 2. Wadhawa C. L., "Electrical Power Systems", New Age International.
- 3. Stevenson W.D., "Elements of Power System Analysis", McGRAW-HILL International
- 4. Saadat Hadi, "Power System Analysis, "TMH Publication.
- 5. MATLAB / Scilab Manual/ETAP Manual

- 1. Prabha Kundur, "Power System Stability and Control", TMH Publication.
- 2. Olle I. Elgerd, "Electric Energy Systems Theory: an Introduction", TMH Publication
- 3. MATLAB/Scilab online Tutorials
- 4. ETAP webinars

Cours	se Code	Course Name	
PC-B	PC-BTE 652 Electric Drives Laboratory		
Course pre-requisites Power Electronics, Electrical Machines			
		Course Objectives	
	 Perform Perform 	tives of this course are m simulations of electrical drives m experiments on Plugging. Braking of DC and Induction motors <u>m experiments to understand different types of electrical drives</u> Course Outcomes	
	 Compa practic Analyz Analyz 	eessful completion of the course, students should be able to are the braking methods of dc drives through performing the cal and software simulation. we the power electronics control for ac and dc drives. the braking methods of ac drives. the braking methods of ac drives. the V/F control of three phase induction motor. Course Content	
		Details	Hrs.
1.	Simulation	of Electrical drives.	2
2.	Simulation	of starting of DC motor (soft start).	2
3.		raking of DC motor	2
4.		f DC motor/Plugging while lowering the load.	2
5.		ve braking of DC motor (by making V <eb) for="" high="" inertia="" load.<="" td=""><td>2</td></eb)>	2
6.	-	nic braking of 3 phase induction motor.	2
7.	Chopper D		2
8.		f induction motor	2
9.		se full wave controlled DC motor drive.	2
10.		l of Induction motor using PWM inverter	2
10.		nent of moment of inertia by retardation test	2
12.		tepper motor drive	2
13.		analysis of single phase IM fed by power electronics converter	2
		brise of Practical Examination/ MCQ examination/ mini project	1 -
		Text Books	
		Power Semiconductor Controlled Drives", Prentice Hall lectric Motor Drives: Modeling, Analysis and Control", Prentice Ha	ıll.
		Reference Books	
2. W. 3. Sut	Leonhard, "(orahmanyam	Sundamentals of Electrical Drives", CRC Press. Control of Electric Drives", Springer Science & Business Media. V, Electrical Drives: Concepts and Applications TMH est course on Electrical Drives Wiley Eastern PH	

Cours	se Code	Course Name	
PC-B	TE653	Switchgear and Protection Labor	ratory
Course pre-requisites			
		Course Objectives	
	ives of this co		
		strate theoretical knowledge.	
	 To conduct experiment based on overcurrent protection scheme. To conduct experiment based on generator protection, earth fault protection 		otaction
	. To conduc	Course Outcomes	
Upon succ	essful comple	etion of the course, students should be able to	
1	-	d operating characteristics of electromagnetic relays, circu	uit
		d other protective devices.	
2		d various protection scheme used in power system equipn	
		erformance of electromagnetic, numerical and microproce	
4		o an ability and skill to design the feasible protection system each main part of a power system	ems
	lieeded 101	Course Content	
Module		Details	Hrs.
No.			
1		racteristic of non-directional over voltage relay	02
2	Study of N	Iniature Circuit Breaker HRC fuse, MCCB:	02
2	component	ts identification and Applications	
3	Study of P	ower Contactor	02
4	Air Circuit	Breaker: components identification and Applications.	02
5	Simulation	n of 2O/C+ 1E/F protection scheme.	02
6	Numerical	Relay: Study and Application	02
7	Generator	protection	02
8	Differentia	al protection using static relay	02
9	Microproc	essor based distance protection	02
		Term Work	
Term wor		Examination/MCQ examination any Industrial switchyard/ Receiving station / substation	n for which students
		Text Books	
Y.C 2. Bhu	3. Paithankar. 7 1vanesh Oza,. 1	Vishwakarma. Power system protection and Switchgear. Mo Fransmission Network Protection.Marcel Dekker, Inc Power system protection and switchgear. MacGraw Hill. M. Chandar. Power system Protection and switchgear. New ag	
		Reference Books	· · · · ·
1. Bla	ckburn, J.L., A	Applied Protective Relaying, Westinghouse Electric Corporatio	n, New York, 1982.
	. ,		

Cours	e Code	Course Name	
PE-B'	BTE601 Renewable Energy Sources		
Course pro	e-requisites	Power System –I, Power Electronics	
		Course Objectives	
The objecti	ves of this co	burse are	
-	•••	enario and the consequent growth of the power generatio	n from
	energy source		
•		ysics of wind, solar, tidal, and geothermal generation pow	ver
generation.			
		ectronic interfaces for wind and solar generation.	
		nvironmental of various RES	
5.10 study	Life cycle co	st of wind and solar. Course Outcomes	
Upon succe	sectul comple		
		tion of the course, students should be able to y scenario and the consequent growth of the power generation	ation from
	energy source		
		lar and small hydro power generation.	
		r electronic interfaces for wind and solar generation.	
		vironmental impact of various RES	
		cost of wind and solar energy.	
	<u></u>	Course Content	
Module		Details	Hrs.
No.			
1		RES and basic concepts : Graphs - global and Indian	4
-		eat transfer, essential of fluid dynamics	
		gy: Wind physics, Betz limit, Tip speed ratio, stall and	0
		l, Wind speed statistics- probability distributions, Wind	8
2		ower-cumulative distribution functions. Review of	
2		d turbine technologies, Fixed and Variable speed wind	
		duction Generators, Doubly-Fed Induction Generators	
		aracteristics, Permanent- Magnet Synchronous Social and environmental aspects. Life cycle cost	
		:gy: Introduction, solar radiation spectra, solar	
		Earth Sun angles, observer Sun angles, solar day length,	10
		of solar energy availability. Solar photovoltaic:	10
		es-Amorphous, mono crystalline, polycrystalline; V-I	
3	-	ics of a PV cell, PV module, array, Maximum Power	
		ing (MPPT) algorithms. Solar thermal Electric	
		ncentrating solar power system, low temperature solar	
	-	n-grid solar thermal applications. Life cycle cost	
		and Wind farms: Overview of grid code technical	
		s. Fault ride-through for wind farms - real and reactive	6
Λ	-	ation, voltage and frequency operating limits, solar PV	
4	power regul	ation, voltage and frequency operating limits, solar PV rm behaviour during grid disturbances. Power quality	
4	power regul and wind fai issues. Powe		

		4
5	Small Hydro: stream flow, measuring flow, dam, diversion,	4
5	measuring head calculating power.	
	Tidal power: Power from a tidal barrage, tidal resonance, kinetic	
	energy of tidal currents, generation of tidal energy, advantages and	6
6	disadvantages of tidal energy.	
0	Geothermal power generation: Introduction to	
	Geophysics, dry rock and hot aquifer analysis, harnessing	
	geothermal resources, social and environmental aspects	
	Requirements of grid integration of renewable energy sources,	
	Grid integration issues, Principles of grid code integration.	4
7	Calculation of hosting capacity of the transmission and distribution	
/	system. Description of the different network topologies where	
	distributed renewable generation can be connected.	
	Term Work	
Term wo	rk shall comprise of	
1. T	'utorials	
2 1	ACO examination	

2. MCQ examination.

Text Books

- 1.John Twidell, Tony Weir, "Renewable energy resources", Routledge; 4th edition (November 30, 2021).
- 2.T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- 3.P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 1984.
- 4.G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons 2004.
 - 5. William Shepherd, "Electricity Generation using wind power", World Scietific

- 1. <u>S. C. Bhatia</u>, "Advanced Renewable Energy Systems", CRC Press, 2014
- 2. J.F. Manwel, J G Mcgowan., "Wind Energy Explained: Theory, design and application", Wiley Publications.
- 3. G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004
- 4. 1547 IEEE standard

Sr. No.	Examination	Module	
1	T-I	1,2	
2	T-II	3, Part of 4	
3	End Sem	1 to 7	

Cours	e Code	Course Name	
PE-B	TE602	Design and Management of Electrical Systems	
Course pr	e-requisites		
		Course Objectives	
 Introduction estimation Discussion 		electrical projects and electrical systems, basics of tendering acepts of design of electrical systems like power distribution, s	
		Course Outcomes	
 Work a Identify standards. 	s a team leader the requiremen	on of the course, students should be able to or a member in multidisciplinary projects in the role of electric at of the project and design electrical systems accordingly as p ways in design and selection of electrical components	-
		Course Content	
Module No.		Details	Hrs.
1	of electrical	n: bjects, Roles of Design Engineer in different projects, Types systems, Review of components of electrical system, ns/drawing in electrical system design, Single line diagram in	4
2	HT connection estimates, Ind various appli Transformer Earthing des	ower Distribution System: on, industrial substation, Electrical load: Size, LF, DF, future dustrial loads, motors, starting of motors, selection of motors for ications, Energy efficient motors. Design consideration in: selection, sizing and specifications. Lightning Protection, sign, neutral grounding, Power factor correction – kVAR types of compensation, IS standards applicable in above	9
3	up Systems: Selection of H Metering, Sw ordination, ca systems. Type	ritchgear Protection, Cabling Systems & Emergency/Back T/LT switchgears, Instrument Transformers, witchboards and MCC, PCC panels, Protection system co- bles: selection and sizing, cable installation and management es of Emergency supply systems, Design, sizing and selection sets, UPS, Batteries. IS standards applicable in above designs.	9
4	Electrification,	ems: action systems for India, Power Supply Systems for Track Mechanics of train movement, Types of traction motor best tion duties, Overhead Equipment (OHE), Recent Technology in	6

	-	
	locomotives such as Metro, Mono rail, Bullet Train.	
5	Illumination Systems: Understanding various terms regarding light, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, design of a lighting scheme for a residential and commercial premises, flood lighting. Energy saving opportunities in illumination.	4
6	Special Electrical Installations Computer Installations, Communications – EPABX, internet, video conferencing, Fire Protection & Extinguishing, Security Systems, Elevators, CC/MA TV, PA / Audio systems.	6
7	Tendering Process: Basics of tendering and estimation, Databases required for reasonably accurate estimates, underlying assumptions in estimates and sensitivity analysis. Review of economic and financial analysis techniques: Time value of money, Simple payback, IRR.	4
	Text Books	
Те	xt/Reference Books:	
2. 3.	Thumann A., <i>Introduction to Efficient Electrical Systems Design</i> , Fairmont Press, Kushare B.E., <i>Handbook on energy efficient motors</i> , International Copper Promotic (India), 1 st Ed. 2002. Rajiv Shankar, " <i>Electrical System Designing made Simple</i> ", Viva Books Pvt.Ltd.20 Dr. K. Rajamani, "Application Guide for Power Engineers Part 1 Earthing & Grour	on council)07
	Electrical systems", Notion Press.	
	Reference Books	
2.	IEEE 80 – IEEE guide for safety in substation grounding Upadhayay J. and Mahindra S. N. Electric Traction, Allied Publishers Ltd, 1st edition "Best Practice Manual on Lighting" by Bureau of Energy Efficiency, Ministry of Po Government of India	

Cours	e Code	Course Name	
PE-B	ГЕ603	Electrical Machine Design	
Course pro	e-requisites	Electrical Machines I and II	
		Course Objectives	
0	ves of this co		
		e design of transformers, induction motors and synchrono	us machines
2.	Introductio	n to computer aided design	
Unon guage	actul comple	Course Outcomes	
-	-	tion of the course, students should be able to the construction and performance characteristics of electr	ical
1.	machines.	the construction and performance characteristics of electr	icai
2.		the various factors which influence the design: electrical,	magnetic
		loading of electrical machines	U
3.		I the principles of electrical machine design and carry	y out a basic
	design of a	n ac machine	
Module		Course Content	
Noaute No.		Details	Hrs.
	Fundamer	ntal aspects of Electrical Machine Design:	
	Design of	machines: Design factors - Limitations in design -	06
		ends in Design of Electrical machines - Modern	
		anufacturing techniques.	
		used in Transformers and Rotating Machines:	
1		conducting materials – High conductivity materials.	
	-	materials: Soft magnetic materials – Solid core Sheet steels – Special purpose alloys.	
		Materials: Electrical properties of insulating material –	
		re rise of insulating material – classification of	
	1	material - Insulating materials used in Modern Electric	
	machines.		
		Design aspects of Electrical machines:	
		ate in electrical machines – Theory of Solid Body	06
2	-	Heating – Cooling. Rotating machines: Methods of cooling - cooling	06
	-	antity of Cooling medium (coolant).	
	system qu	analy of coording moutanin (coordine).	
	Design of '	Transformers: (Core Type Transformers).	
	-	transformer. Design Details: Output for single & three-	08
	phase trans		
2	-	quation – Volt per Turn. Optimum Designs. Design of	
3		ctangular core – Square and stepped cores – Variation ameter. Selection of Core area and Type of Core.	
		flux density. Design of windings – Selection of Type	
		Position of winding relative to core. Window space	
	-	vindow dimensions – Width of window for optimum	

	output. Design of Yoke. Overall Dimensions. Simplified Steps for Transformer Design.	
4	Transformer Design Operating Characteristics: Resistance of Winding – Leakage reactance of winding – Regulation – No-load current. Temperature Rise of Transformers - Methods for cooling of transformers – Transformer oil as cooling medium – Temperature rise in plain walled Tanks. Design of Tank - with Tubes with Radiators.	04
5	Design of Induction Motors: Introduction - Sizing of an induction motor. Relation between Rating and Dimensions of Induction Motor – Specifications - Output Equation – Main Dimensions - Factors affecting the size of the machine – Specific electrical Loading – Specific Magnetic loading – Choice of specific electrical and magnetic loadings – Efficiency and Power Factor.	04
6	Induction motor Design Details: Calculation of Main Dimensions – Separation of D and L – Peripheral velocity – Ventilating Ducts. Design of Stator Core - Stator winding Design - Stator slot design – Stator Teeth Design – Depth of Stator Core. Determination of Air gap length. Design Rotor: Design of Squirrel cage Rotor - Rules for selecting rotor slots - Design of rotor bars and slots - design of end rings. Design of wound rotor – Number of Slots - Number of Turns – Rotor current and conductor section. Design of rotor core.	10
7	Estimation of Operating Characteristics of Induction Motor : No-load current – Short circuit current – Stator and Rotor Resistance – Leakage Reactance – Circle diagram – Starting Torque – Losses and Efficiency.	04
	Text Books	
Rai 3. S. K	 K. Sawhney, "A Course in Electrical Machine Design", Dhanpat and Sons, 1970. K. Sen, "Principles of Electrical Machine Design with puter programs", Oxford and IBH Publishing, 2006 	
	Reference Books	
1. M	I.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS	London.

Sr. No.	Examination	Module
1	T-I	1, Part of 2
2	T-II	Part of 2, 3
3	End Sem	1 to 7

Cours	e Code	Course Name			
PE-BTE604 Control System Des		Control System Design			
Course pre	Course pre-requisites Control System				
1	1	Course Objectives			
1.	Discuss desig	gn specifications			
2.	Design of co	ntrollers and compensators n time and frequency domain			
	-	ntrollers and observers using state space			
	U U	n linearity and its effect on system performance			
		Course Outcomes			
Stu	dents will be	able to			
		frequency domain design specifications.			
		illers/ compensators time domain and frequency domain method	ls.		
	-	llers and observers using the state-space approach.			
	-	us nonlinearities and phase plot analysis			
		Course Content			
Module		Details	Hrs.		
No.					
	Design Spe	cifications	06		
	Introduction to design problem and philosophy. Introduction to time				
1	domain and frequency domain design specification and its physical				
1	relevance. Effect of gain on transient and steady state response. Effect of				
	addition of	pole on system performance. Effect of addition of zero on			
	system resp				
	Design of F	PID controllers	06		
2		P, PI, PD and PID controllers in time domain and frequency			
		first, second and third order systems.	07		
		Classical Control System in the time domain : n to compensator. Design of Lag, lead lag-lead compensator	07		
3		pmain. Feedback and Feed forward compensator design.			
		ompensation. Realization of compensators			
	Design of C	Classical Control System in frequency domain	06		
4		or design in frequency domain to improve steady state and			
	Bode diagra	sponse. Feedback and Feed forward compensator design using			
		stem Design in state space	06		
_		f state space representation, Realization: Canonical form,	00		
5		orm, Concept of controllability & observability, effect of pole			
		lation on the controllability & observability of the system.			
		and Observer Design	06		
6		nent design through state feedback. Ackerman's Formula for ain design. Design of Observer. Reduced order observer.			
	Separation 1				
	•	ies and its effect on system performance Various types of	05		
7		y. Effect of various nonlinearities on system performance.			
,		ints. Phase plot analysis.			
L	0 - r ·				

For Self-study: Application where the design of controller/ compensator/observer is used.

Text Books:

- 1. N. Nise, "Control system Engineering", 4/e, John Wiley, 2007.
- 2. I. J. Nagrath and M. Gopal, "Control system engineering", 5/e, New Age, 2007.
- 3. M. Gopal, "Control Systems Principles and Design", 2/e, McgrawHill,2006

- 1. K. Ogata, "Modern Control Engineering", 5/e, Pearson, 2015
- J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", 3/e, McGraw Hill, 1988
- 3. R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", 4/e, Oxford University Press, 2002

Cours	se Code	Course Name		
PE-BTE 611		Basics of Automotive Systems		
	se pre- iisites	Basic Machines, Applied Mechanics		
		Course Objectives		
•		atomotive components and subsystems.		
2. To explo	ore and com	pare the transition of automotive domain from ICE to electric	vehicles	
		Course Outcomes		
		pletion of this course, the learner will be able: eral configuration and working principles of different types of	f	
	e Powertrain			
		orking of various automotive transmission systems and		
		tric powertrains and their different modes of operations		
-		and state of the art of Electric vehicles and to compare with I	CE	
vehicles, F	IEVs and EV			
Module		Course Content		
No.		Details	Hrs.	
	Vehicle M	lechanics:	10	
	History of	Vehicle Development, General Configuration of		
	Automobile, Body and Chassis Fundamentals: General Packaging,			
		Structural System, Backbone Construction; Body and		
	Chassis M	•		
1	Automotiv	e Powertrain, Mechanical Suspensions system, Steering		
	System, N	Noise –vibration and harshness (NVH), Control System		
	Integration	and Implementation.		
	Front-Whe	eel Drive (FWD) Powertrains, Rear-Wheel Drive		
		ns (RWD), Multi-Wheel Drive Powertrains (AWD and		
	4WD)			
	Transmiss	sion Systems:	6	
		ion gears, Manual Transmission (MT), Automatic		
	Transmiss	ion (AT), Automated Manual Transmissions (AMT) and		
2	Continuou	sly Variable Transmissions (CVT);		
2	Manual Tr	ansmissions Powertrain Layout and Manual Transmission		
	Structure,	Power Flows and Gear Ratios, Manual Transmission Clutch		
	and its stru	cture. Drivetrain and Differential structure.		
	Automotiv	ve Subsystems:	6	
		ve Aero-dynamics, Vehicle Power Demand Analysis,		
_		eed characteristics of vehicular load. Types of suspension		
3		Braking systems; Tyre Mechanics: Tyres and wheels, Tyre		
		stics, Vehicle handling & stability		
	ICE Dowfo	ormance Characteristics:	6	
4		torque generation, specific fuel consumption, specific	0	
+				
	emissions,	Efficiencies- fuel conversion efficiency, mechanical		

	efficiency, volumetric efficiency. Cooling systems for ICE based vehicles. Few basic topic of thermodynamic to understand ICE. RC Snubber Design, RCD Snubbers,	
5	Electric Vehicles: Basics of Electric Vehicles, Current Status and Trends for EVs, Battery Electric Vehicles (BEVs), Fuel-Cell Electric Vehicles (FCEVs), Electric Machines for EV applications (brief introduction), EV Transmission: Single-Speed EV Transmission, Multiple Ratio EV Transmissions. Cooling systems for Electric Vehicles	6
6	Hybrid Powertrain: Series HEVs, Parallel HEVs, Series–Parallel HEVs, Complex HEVs, Operating Modes, Degree of Hybridization, Comparison of HEVs, Plug-in Hybrid Electric Vehicles (PHEVs) Real Life examples of HEVs.	4
7	Impact analysis of green house gas (GHS). Comparison of ICE vehicle with HEVs and EVs. National Policy for adoption of EVs.	4

Text Books:-

- 1. Vehicle Powertrain Systems by Behrooz Mashadi and David Crolla, Wiley, 2012
- 2. Automotive Aerodynamics by Joseph Katz, Wiley, 2016
- 3. Automotive Chassis Engineering, by David C. Barton and John D. Fieldhouse, Springer, 2018

4. Automotive Engineering Powertrain, Chassis System and Vehicle Body Edited by David A. Crolla, Elsevier, 2009

- 5. Automotive Power Transmission Systems by Yi Zhang and Chris Mi, Wiley, 2018
- 6. Linear Electric Machines, Drives, and MAGLEVs Handbook, by Ion Boldea, CRC Press. 2013

7. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, and Ali Emadi, CRC Press 2005

- 8. Electric Vehicle Technology Explained by James Larminie and John Lowry, John Wiley, 2003
- 9. Electric And Hybrid Vehicles- Design Fundamentals by Iqbal Husain, CRC Press, 2005

Reference Books:-

- 1. Encyclopaedia of Automotive Engineering edited by David Crolla et al, Wiley, 2014
- 2. Design and Control of Automotive Propulsion Systems by Zongxuan Sun and Guoming Zhu, CRC Press, 2015

3. The Automotive Transmission Book by Robert Fischer, Ferit Küçükay, Gunter Jürgens, Rolf Najork, and Burkhard Pollak, Springer, 2015

4. Noise and Vibration Control in Automotive Bodies by Jian Pang, Wiley, 2019

Website Reference / Video Courses:

1. NPTEL Web course: Fundamentals of Automotive Systems, by Prof. C.S. Shankar Ram, IIT Madras, https://nptel.ac.in/courses/107/106/107106088/

Course	e Code	Course Name	
PE-B	ГЕ612	Micro-grid and Distributed generation	
Course pre	e-requisites	Power System	
		Course Objectives	
	ctives of this		
		the concept of distributed generation.	
		he impact of grid integration. ncept of Micro grid and its configuration	
5.	To study con	Course Outcomes	
Upon succ	essful compl	letion of the course, students should be able to	
		itional power generation	
		pt of distributed generation and installation	
3. Design	n the grid	integration system with conventional and non-	
conve	ntional energ		
	Γ	Course Content	
Module No.		Details	Hrs.
1	Solar PV, biomass, Sources o Distribut Concept o regulatory Distribute installatio storage el plants	rises, Non-conventional energy (NCE) resources: review of Wind Energy systems, Fuel Cells, micro- turbines, and tidal sources. Distributed vs Central Station Generation of Energy ted generations: of distributed generations, topologies, selection of sources, y standards/ framework, Standards for interconnecting ed resources to electric power systems: IEEE 1547, DG on classes, security issues in DG implementations. Energy ements: Batteries, ultra- capacitors, flywheels. Captive power	6
2	Impact o Requirem parameter operating NCE sour	f grid integration: nents for grid interconnection, limits on operational rs, voltage, frequency, THD, response to grid abnormal conditions, islanding issues. Impact of grid integration with rces on existing power system: reliability, stability and ality issues.	06
3	Basics of Concept a benefits, 1 configura	a micro grid: and definition of micro grid, micro grid drivers and review of sources of micro grids, typical structure and tion of a micro grid, AC and DC micro grids, Power cs interfaces in DC & AC micro grids.	06
4	Control a Modes of islanded r anti-island	and operation of micro grid: operation and control of micro grid: grid connected and mode, Active and reactive power control, protection issues, ding schemes: passive, active and communication based es, micro grid communication infrastructure	06

5	Impact of Distributed Generation on the Power System. Power Quality Disturbances. Power quality issues in micro grids, regulatory standards, Micro grid economics	4
6	Control of DG inverters, phase locked loops, current control and DC voltage control for standalone and grid parallel operations. Protection of the converter Relaying and protection: distributed generation interconnection relaying, sensing using CTs and PTs.	6
7	DG planning cost implications of power quality, cost of energy and net present value calculations and implications on power converter design. Economics of Distributed Generation-Case Studies	8

- **1.** Technical literature-papers published in power electronics related journals and IEEE standards.
- 2. Ned Mohan, Tore M. Undeland, William P Robbins, "Power Electronics: Converters, Application, and Design". Wiley, 2002.
- **3.** Ranjan Rakesh, Kothari D.P, Singal K.C, "Renewable Energy Sources and Emerging Technologies",2nd Ed. Prentice Hall of India ,2011
- **4.** Math H. Bollen, Fainan Hassan," Integration of Distributed Generation in the Power System", July 2011, Wiley –IEEE Press
- Loi Lei Lai, Tze Fun Chan, "Distributed Generation: Induction and Permanent Magnet Generators", October 2007, Wiley-IEEE Press.
- 6. Roger A. Messenger, Jerry Ventre, "Photovoltaic System Engineering", 3rd Ed, 201

Course	e Code	Course Name	
PE-B	ГЕ613	Digital Control Design	
	se pre- isites	Control System, Digital Signal Processing	
A		Course Objectives	
	1. Obta	ain discrete representation of LTI systems.	
	2. Ana	lyze stability of open loop and closed loop discrete-time systems.	
	3. Des	ign and analyze digital controllers.	
	4. Des	ign state feedback and output feedback controllers	
		Course Outcomes	
 Obt Ana Des 	alyze stability	representation of LTI systems. y of discrete-time systems. yze digital controllers. dback and output feedback controllers.	
	Γ	Course Content	
Module No.		Details	Hrs.
	Discrete R	epresentation of Continuous Systems	07
1	systems. Sa hold circuit	bigital Control Systems. Discrete representation of continuous simple and hold circuit. Mathematical Modeling of sample and . Effects of Sampling and Quantization. Choice of sampling ZOH equivalent, state space system	
2	Z-Transform Pulse Tran Mapping fr	ystem Analysis m and Inverse Z Transform for analyzing discrete time systems. sfer function. Pulse transfer function of closed loop systems. rom s-plane to z plane. Solution of Discrete time systems. Time discrete time system.	07
3	analysis usi	f Discrete Time System Stability analysis by Jury test. Stability ing bilinear transformation. Design of digital control system with esponse. Practical issues with dead beat response design	06
4	State space	e Approach for discrete time systems models of discrete systems, solution to state space equations, analysis. Lyapunov Stability	05
5	Controllabi	e Approach for discrete time systems lity and observability analysis. Effect of pole zero cancellation rollability & observability.	05
6	Design of	Digital Control System Nyquist plot for controller design,	05

	Design of Discrete PID Controller, Design of discrete state feedback controller. Design of set point tracker. Design of Discrete Observer for LTI	
	System. Design of Discrete compensator	
	Discrete output feedback control Design of discrete output feedback	07
7	control. Fast output sampling (FOS) and periodic output feedback controller	
	design for discrete time systems.	

For Self-study:

Text Books:

1. M. Gopal, "Digital Control and State Variable Methods", 3/e Mcgraw Hill Higher Education, 2010

- 1. K. Ogata, "Discrete Time Control Systems", 2/e, PHI, 2005
- 2. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", 3/e, Addison-Wesley, 1998.
- 3. B.C. Kuo, "Digital Control System", 2/e, Holt, Rinehart and Winston, 1987

Cours	e Code	Course Name	
OE-B	OE-BTE601 Power Plant Engineering		
Course pr	Course pre-requisites		
		Course Objectives	
The object	ives of this co To provide issues	ourse is an overview of power plants and the associated energy co	onversion
		Course Outcomes	
Upon succe	essful comple	tion of the course, students should be able to	
	Understand economics	the principles of operation for different power plants and	their
		Course Content	
Module No.		Details	Hrs.
1	Coal based thermal power plants, basic Rankine cycle and its06modifications, layout of modern coal power plant, super critical06boilers, FBC boilers, turbines, condensers, steam and heating rates06		
2	Subsystems of thermal power plants, fuel and ash handling,06draught system, feed water treatment, binary cycles and06cogeneration systems06		
3	Gas turbine and combined cycle power plants, Brayton cycle 06 analysis and optimization, components of gas turbine power 06 plants, combined cycle power plants, Integrated Gasifier based Combined Cycle (IGCC) Systems 06		
4	Basics of r nuclear po Water Rea Water Rea Fast Breed	nuclear energy conversion, Layout and subsystems of wer plants, Boiling Water Reactor (BWR), Pressurized actor (PWR), CANDU Reactor, Pressurized Heavy ctor (PHWR), er Reactors (FBR), gas cooled and al cooled reactors, safety measures for	06
5	Hydroelectric power plants, classification, typical layout 06 geothermal, biogas and fuel cell power systems 06		
6	Energy, eco parameters	onomic issues, power tariffs, load distribution , load curve, capital and operating cost of different its, pollution	06
7	Energy env	vironmental issues including waste disposal options d nuclear plants.	06

Text Books
1. Nag P.K., Power Plant Engineering, 3rd ed., Tata McGraw Hill, 2008.
Reference Books
1. El Wakil M.M., Power Plant Technology, Tata McGraw Hill, 2010.
2. Elliot T.C., Chen K and Swanekamp R.C., Power Plant Engineering,
MGH2nd ed., McGraw Hill, 1998.

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	1 to 7

Cours	e Code	Course Name	
OE-B	OE-BTE602 VLSI Circuits		
Course pre-requisites Digital Electronics			
		Course Objectives	
	ives of this co		
		ce the fundamental principles of VLSI circuit design and l	ayout
,	techniques. 2 To highligh	nt the circuit design issues in the context of VLSI technology	σν
		e the basic building blocks of large-scale digital integrated	
		Course Outcomes	
-	-	tion of the course, students should be able to	
		te a clear understanding of choice of technology and techn	nology
	scaling.	Choosed signation and draw largest	
		OS based circuits and draw layout. ic circuits with different design styles.	
		te a clear understanding of system level design issues such	as timing
	and power	č	i us uning
	1	Course Content	
Module		Details	Hrs.
No.			
		on and overview:	06
	technology	asic transistor technology, NMOS and CMOS	
1		n process and layout: NMOS, LOCOS, CMOS, CMOS	
		es, MOSFET Scaling: Types of scaling, MOSFET	
	capacitance		
	MOSFET		06
	Circuit An	alysis: Static and dynamic analysis (Noise, propagation	
		power dissipation) of resistive load and CMOS inverter,	
2	comparison	n of all types of MOS inverters, design of CMOS	
	inverters, C	CMOS Latch- up.	
	Logic Cire	cuit Design: Analysis and design of 2-I/P NAND and	
	-	equivalent CMOS inverter.	
		uit Design Styles:	06
3		les: Static CMOS, pass transistor logic, transmission gate,	
	Pseudo NM		
		alization: SR Latch, JK FF, D FF. actor Memories:	08
		y, SRAM (operation, design strategy, leakage currents,	Vo
4		circuits), DRAM (Operation, 3T, 1T, operation modes,	
		rents, refresh operation, Input-Output circuits).	
	-	r CMOS Circuits: Various components of power	04
5		CMOS, Limits on low power design, low power design	-
5	—	Itage Scaling.	
	-	Description Languages for VLSI Design:	08
6		concurrency and time in Hardware Description	

	Languages, Introduction to VHDL, Basic Components in VHDL,	
Structural Description in VHDL, Behavioral Description in		
	VHDL, and Introduction to Verilog.	
	VLSI Clocking:	04
7	CMOS clocking styles, Clock generation, stabilization and	
	distribution.	

Text Books
1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and
Design", Tata McGraw Hill.
2. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits
and Systems Perspective", Pearson Education
Reference Books
1. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated
Circuits: A Design Perspective", Pearson Education.
2. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata
McGraw Hill.

- 3. Debaprasad Das, "VLSI Design", Oxford.
- 4. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	1 to 7

Course Code		Course Name	
OE-BTE603 Linear Algebra and Matrix Computation			tion
Course pr	Course pre-requisites		
		Course Objectives	
The object	ives of this co	·	
		conversant with fundamentals of Linear Algebra.	
	*	edge about various concepts of matrix computation.	
	-	plexity in solving least square problem	
4. To	understand co	ncepts of Eigen Value and Eigen vectors Course Outcomes	
Upon succe	essful comple	tion of the course, students should be able to	
		cal concepts of vector spaces to solve linear equations.	
		is properties such as rank, subspaces, norm, condition numb	er. eigen
	ie etc. of a giv		
3. To (compare comp	plexity of various matrix decomposition methods.	
4. To s	solve least squ	are problem with different matrix computation techniques	
5. To s			
		Course Content	
Module No.		Details	Hrs.
110.	Introductio	n: Over-view of the course, applications in various	
1	engineering Vector-spaces,	fields, ces: Fields, definition of a vector-space, examples, sums and intersections of subspaces, span, linear	4
	calculations	ce, bases, dimension, basis extension, coordinates, of bases concerning solutions of linear equations.	
2	range/image	haps: Definition, examples, null/kernel space, e space, matrix representations of linear maps, row- nn-rank, rank-nullity theorem, algebra of linear maps, ionals	4
3	pivoting, L Positive def	elimination: Basic Gaussian elimination without U decomposition, Gaussian elimination with pivoting. inite matrices, A brief discussion on sparsity.	6
4	Condition r propagation	and round-off errors: Vector norms, matrix norms. number. Perturbation, residual, round-off errors. Error in Gaussian elimination.	6
5	reflectors. S Gram-Schm	ares Problem: Orthogonal matrices, rotators and solution of the least squares problem, the full-rank case. idt process. Singular value Decomposition (SVD): a, Some basic applications, least squares problem	8
6	similarity t	s and Eigenvectors: The power method. Unitary ransform, Schur's theorem, normal matrices, spectral normal matrices. Hessenberg and tri-diagonal matrices,	8

reduction to these forms. The QR algorithm. A brief discussion on sparsity.		
7	Applications: a) Graphs, KCL and KVL b) Solving linear ODEs c) The geometry of gradient descent d) Best approximation e) Multi-agent systems.	6

Text Books	
1.	K. Hoffman and R. Kunze, Linear Algebra, Pearson, 2015.
2.	G. Strang, Linear algebra and its applications (4th Edition).
Reference Books	
1.	David S. Watkins, Fundamentals of Matrix Computations, 3rd Edition, Willey-Inter science, 2010.
2.	Gene H. Golub and Charles F. Van Loan, Matrix Computations, 4th Edition, The Johns Hopkins University Press, 2013.

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	1 to 7

~~~~	~ •	~ ~ ~	
Course Code		Course Name	
OE-BTE604 Computer Architecture			
~			
Course pro	e-requisites	Microprocessor and Microcontroller	
		Course Objectives	
The objecti	ives of this co	-	
		n to computer, memory and input-output organization	
	Discuss pip		
3.	Explain dif	ferent architectures Course Outcomes	
Upon succe	essful comple	etion of the course, students should be able to	
-	-	concepts of microprocessors, their principles and practic	es
	-	er and floating point arithmetic.	
	U		
	-	U operation and implementation	
4.	4. Compare and contrast various architectures and microprocessors. Course Content		
Module			
No.		Details	Hrs.
1	Introducti	ion to computer organization	02
1	RISC,	re and function of general computer system, CISC Vs	
	,	s, Integer Arithmetic - Multiplication, Division,	06
		Floating point representation and arithmetic, Control	
2	unit operat		
		implementation of CPU with Micro , microprogramming, System buses,	
		organization.	
		organization	08
	•	emory, Cache memory - types and organization,	
3		mory and its implementation, Memory management	
	unit, Magn	etic Hard disks, Optical Disks	
	Input – ou	Itput Organization	08
	U	I/O devices, Direct Memory Access and DMA	
4		Interrupts and Interrupt Controllers, Arbitration,	
		Bus Architecture, Interface circuits - Parallel and	
	senai port.	Features of PCI and PCI Express bus.	
	16 and 32	microprocessors	06
	80x86 Arc	hitecture, IA – 32 and IA – 64, Programming model,	
5	Concurren	t operation of EU and BIU, Real and Protected mode.	

6	<b>Pipelining</b> Introduction to pipelining, Instruction level pipelining (ILP), compiler techniques for ILP, Data hazards, Dynamic scheduling, Dependability, Branch cost, Branch Prediction, Influence on instruction set.	06	
7	<b>Different Architectures</b> VLIW Architecture, DSP Architecture, SoC architecture, Processor and programming	06	
	Term Work		
Term wor	k shall comprise of		
1.	Assignments on the above topics which include some numerical calc	ulations.	
2.	2. Examination (MCQ) based on topics mentioned in latest GATE syllabus		
3.	3. Mini Project*		
*Mini	*Mini Project: :There will be a course project in the form of case study where the students		

will be able to analyze and integrate the knowledge gained during the course. The case study will be done by teams of Two to Four students.

For Self-Study: Instruction set of 80x86, I/O addressing in 80x86

<ol> <li>W. Stallings, "Computer organization", PHI, 1987.</li> <li>V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", 1 1978.</li> <li>Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 80 Family", Prentice Hall India, 1986</li> </ol> Reference Books <ol> <li>J. L. Hennessy and D. A. Patterson, "Computer Architectu Approach", Morgan Kauffman, 2011.</li> <li>P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware Prentice Hall, 2004.</li> </ol>	Text Books	
<ul> <li>1978.</li> <li>3. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 80 Family", Prentice Hall India, 1986</li> <li>Reference Books</li> <li>1. J. L. Hennessy and D. A. Patterson, "Computer Architectur Approach", Morgan Kauffman, 2011.</li> <li>2. P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ul>		
<ul> <li>3. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 80 Family", Prentice Hall India, 1986</li> <li>Reference Books</li> <li>1. J. L. Hennessy and D. A. Patterson, "Computer Architectur Approach", Morgan Kauffman, 2011.</li> <li>2. P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ul>	McGraw Hill,	
<ul> <li>Family",Prentice Hall India, 1986</li> <li>Reference Books</li> <li>1. J. L. Hennessy and D. A. Patterson, "Computer Architectu Approach", Morgan Kauffman, 2011.</li> <li>2. P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ul>		
Reference Books           1. J. L. Hennessy and D. A. Patterson, "Computer Architectu Approach", Morgan Kauffman, 2011.           2. P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware	86/8088	
<ol> <li>J. L. Hennessy and D. A. Patterson, "Computer Architectu Approach", Morgan Kauffman, 2011.</li> <li>P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ol>		
<ul> <li>Approach", Morgan Kauffman, 2011.</li> <li>2. P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ul>	Reference Books	
<ol> <li>P. Barry and P. Crowley, "Modern Embedded Computing", N 2012. 6. N. Mathivanan, "Microprocessors, PC Hardware</li> </ol>	re A Quantitative	
2012. 6. N. Mathivanan, "Microprocessors, PC Hardware		
-	lorgan Kaufmann,	
Prentice Hall 2004	and Interfacing",	
3. P. Able, "8086 Assembly Language Programming", Prentice Ha	ll India.	
4. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson	Education, 2000.	

Sr. No.	Examination	Module
1	T-I	1,2,3
2	T-II	4,5
3	End Sem	1 to 7

Course Code	Course Name
OE-BTE605	Project Management
<b>Course pre-requisites</b>	Basics of Electrical Engineering, Basics of statistics and
	mathematics, general knowledge about working of
	organizations

Course Objectives			
The objecti	The objectives of this course are		
	1. Get familiarized with basics of project management, its organization and project		
	management framework.		
2	Learn five important project management process groups,		
	namely: initiating, planning, executing, monitoring & control,		
	closing and ten important project management knowledge areas.		
3.			
	groups and knowledge areas.		
	Course Outcomes		
Upon succe	essful completion of the course, students should be able TO		
1. E	xplain basics of Project Management, its organization and project mar	agement	
	ramework.	-	
2. P	erform project management process group and knowledge area mapping	ng.	
3. S	olve a case study using step-by-step process of managing projects and	d explain why	
e	ach step is necessary.		
	Course Content		
Module No.	Details	Hrs.	
	Introduction	03	
	• Basics of project management, operations management and		
1	organizational strategy,		
1	<ul> <li>Project management framework, organizational structures,</li> </ul>		
	<ul> <li>Project Management Processes – Initiating, Planning, Executing,</li> </ul>		
	Monitoring & Control, Closing.		
	Project Integration Management	04	
	• Integrated change control, Developing project management plan and		
	project charter,		
	• Project selection, corrective action, preventive action, defect repair,		
	change control board, Cost honofit analysis. Not present value, internal rate of return		
	<ul> <li>Cost benefit analysis, Net present value, internal rate of return, payback period, present value, economic value added,</li> </ul>		
2	<ul> <li>Opportunity costs, sunk costs, law of diminishing returns, working</li> </ul>		
	capital, depreciation.		
	Project Scope Management		
	• Scope baseline, WBS, Project scope statement, WBS dictionary,		
	benefits and uses of WBS		
	• Requirement documentation, requirements traceability		
	matrix, requirements management plan		
	Project Time Management	09	
3	• Schedule baseline, schedule compression, Network diagram,		
	• Precedence Diagramming Method (PDM), Three point estimating,		

	analogous estimating, parametric estimating,	
	• Schedule management plan, resource optimization, Critical path	
	method, Program Evaluation Review Technique (PERT).	
	Project Cost Management	
	• Earned value measurement, Earned value monitoring, cost baseline,	
	cost budget, Cost management plan,	
	• Reserve analysis, contingency reserve, management reserves, cost	
	risk,	
	• Variable / fixed costs, direct / indirect costs, life cycle costing, value	
	analysis, control thresholds, cost of quality, Return of Interest (RoI),	
	and discounted cash flow.	
	Project Quality Management	
	• Seven basic quality improvement tools – control chart, Pareto	
	diagram, Cause and effect diagram, flow chart, scatter diagram,	
	histogram. Use of s-curve in project monitoring.	
	• Quality assurance tools and techniques – Affinity diagram, tree	
	diagrams, process decision program charts, matrix diagrams,	
	prioritization matrices, network diagrams.	
	Project Human Resource Management	04
	• Role of PM, sponsor, stakeholders, functional manager, portfolio	
	manager, program manager,	
	• HR management plan, recognition and reward systems, team	
4	building, stages of team formation and development, team types.	
	Conflict Management,	
	<ul> <li>Responsibility Assignment Matrix (RAM), RACI Chart,</li> </ul>	
	<ul> <li>Motivation theory, Management and Leadership styles,</li> </ul>	
	Project Communication Management	
	• Communication models, channels, method, communication blockers.	
	Project Risk Management	06
	• Risk management plan, risk response strategies, threats,	
	opportunities, risk register, contingency plans, fallback plans,	
	residual risks, secondary risks,	
	<ul> <li>Risk types and categories, SWOT analysis,</li> </ul>	
	Project Procurement Management	
5	<ul> <li>Procurement management plan, types of agreements and contract</li> </ul>	
	types, advantages and disadvantages of each contract type,	
	• PM's role in procurement, procurement documents : RFP, IFB, RFQ,	
	RFI,	
	<ul> <li>Types of procurement, procurement negotiations, centralized /</li> </ul>	
	decentralized contracting, contract interpretation, price, profit, cost,	
	target price, sharing ratio, ceiling price	
	Project Stakeholder Management	03
6	• Stakeholder analysis, stakeholder register, stakeholder expectations,	
0	stakeholder engagement,	
	• Power and interest grid, stakeholders engagement assessment matrix	
	Professional and Social Responsibility	05
	<ul> <li>Project management traits in professional and social responsibility,</li> </ul>	
7	• Code of Ethics and Professional conduct w. r. t. responsibility,	
	respect, fairness, honesty.	
	Project Management Case Study / Activity	

	Text Books		
1. R	1. Rita Mulcahy, "PMP Exam Prep", Eight Edition, RMC Publications, Inc., 2013.		
2. K	2. Kalpesh Ashar, "Project Management - Essentials You Always Wanted to Know",		
V	/ibrant Publishers, 2012.		
3. P	Prasanna Chandra, "Projects: Planning, Analysis, Select	ion, Financing, Implementation	
a	nd Review", McGraw Hill India, 2014.		
	<b>Reference Books</b>		
1. E	Dennis Lock and Lindsay Scott, "Gower Handbook of F	People in Project Management",	
R	Routledge Publishers, NY, USA, 2016.		
2. "	2. "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5 th		
E	Edition, Project Management Institute, USA.		
	3. David Cleland, "Project Management Handbook", 2 nd Edition, Wiley, 1988.		
Cn No	Examination	Madula	

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	1 to 7

# Appendix -I

## **Skill Based Courses**

Sr	Name of the course	Course code
No.		
1	Electrical Simulation Lab	SK-BTE001
2	Electronics Design Laboratory	SK-BTE002
3	DSP Processor and applications to electrical engineering	SK-BTE003
4	Programmable Logic Controllers	SK-BTE004

#### **1.** Electrical Simulation Lab (SK-BTE001)

Course Code	Course Name
SK-BTE001 Electrical Simulation Lab	
Course pre-requisites	Courses in Electrical Network, Machines I, II, Power Electronics, Power system and basic knowledge of programming, familiar with Engineering software such as MATLAB or Scilab

#### **Course Objectives**

Objectives of this course are

- 1. To demonstrate theoretical knowledge.
- 2. To conduct simulations for analysis of different concepts in Electrical Engineering

#### **Course Outcomes**

Upon successful completion of the course, students should be able

- 1. Acquire skills of using software for Electrical Engineering studies.
- 2. Analyze different theories studied in electrical networks, power electronics, control system, power system and electrical machines.

List of E-maximanta (Minimum Tan)		
List of Experiments (Minimum Ten)		
Expt. No.	Details	Hours
	Study of power flow in a Star connected load and Delta connected	
1	load parallel to each other and fed from 3 phase AC source through a	2
	transmission line.	
2	Study of vector group of a transformer.	2
3	Concept of balanced and unbalanced loads in a 3-phase system.	2
4	Simulation of Hysteresis loss in a transformer in MATLAB	2
5	Comparison of linear and non-linear inductor in MATLAB	2
6	Supercapacitor charging and discharging behavior in MATLAB	2
7	Study of Analog anti-aliasing filter in MATLAB	2
8	Study of customized synchronous Machine in MATLAB	2
9	Modelling of Frequency dependent transmission line in MATLAB	2
10	Study of Induction motor starting current with DOL starter and Star-	2
10	Delta starter	
11	Load flow study in any IEEE standard multimachine system using	2
	Load flow analyzer or ETAP.	Δ
12	Development of overcurrent relay using Simulink	2

13	Development differential protection of transformer using Simulink	2
14	Detection of fault location on a transmission line using voltage, current measurements.	2
15	Study of Capacitor bank switching transient	2
16	Study of inductive load switching transient	2
17	Study of relay co-ordination using ETAP	2
18	Study of Type 2 Co-ordination for an Induction motor using ETAP	2
19	Study of circuit breaker short circuit ratings adequacy using ETAP	2
20	Estimation of phasors using DFT Algorithm	2
21	Study vulnerability of distance relay (VADR) using WAMS software.	2
21	Transient stability analysis of a simple power system using ETAP under different contingencies.	2

Text Books	
1. MATLAB / Scilab Manual	
2. ATP/PSCAD manual	
3. ETAP Manual	
Reference Books	
1. MATLAB/Scilab online Tutorials	
2. ETAP webinar	

#### **2.** Electronics Design Laboratory (SK-BTE002)

Course Code	Course Name
SK-BTE002	Electronic Design Laboratory
G ···	

Course pre-requisites

Electronic circuit, Analog Electronics,

#### Course Objectives

The objectives of this course are

- 1. To introduce the fundamental principles of electronics system design.
- 1. To highlight the circuit design issues in the context of electronic system design.

#### **Course Outcomes**

Upon successful completion of the course, students should be able to

- 1. Understand the practical issues related to practical
- implementation of applications using electronic circuits.
- 2. Choose appropriate components, software and hardware platforms.
- 3. Design a Printed Circuit Board, get it made and populate/solder it with components.
- 4. Work as a team with other students to implement an application.

Course Content		
Module No.	Details	Hrs.
1	Basic concepts on measurements; Noise in electronic systems; Sensors and signal conditioning circuits;	4+4
2	Introduction to electronic instrumentation and PC	4+4

	based data acquisition;	
3	Electronic system design, Analog system design, Interfacing of analog and digital systems	4+4
4	Embedded systems, Electronic system design employing microcontrollers, CPLDs, and FPGAs	4+4
5	PCB design and layout;.	4+4
6	System assembly considerations	4+4
7	Group projects involving electronic hardware (Analog, Digital, mixed signal) leading to implementation of an application	4+4
	Term Work	
Term wor	k shall comprise of	
1	. Assignments on above topics.	
2. Lab assignments consist of design problems based on electronics/electrical system design.		
3. Mini Project*		
i t	*Mini Project: There will be a course mini project where the students will be and integrate the knowledge gained during the course. The projects will be teams of Four to Five students. The group has to present the project and sub- report	e developed by

	Text Books		
1.	P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1997.		
2.	H.W.Ott, "Noise Reduction Techniques in Electronic Systems", Wiley, 1989.		
3.	W.C. Bosshart, "Printed Circuit Boards: Design and Technology", Tata McGraw		
	Hill,1983		
Reference Books			
1.	A. S. Sedra and K. C. Smith, "Microelectronic circuits", Oxford University Press,		
	2007.		
2.	G.L. Ginsberg, "Printed Circuit Design", McGraw Hill, 1991.		

3. DSP Processor and applications to electrical engineering	(SK-BTE003)
-------------------------------------------------------------	-------------

<b>Course Code</b>	Course Name
SK-BTE003	DSP Processor and applications to electrical engineering

_____

# Course pre-requisites

Objectives of this course are       1. To understand comparison of microcontrollers and digital signal processors.         2. To learn and implement DSP programming         3. To understand internal details of DSP architecture, peripheral, addressing modes, interrupt structure, hardware multiplier         Course Outcomes         Upon successful completion of the course, students should be able to         1. Understand and use new /advanced DSP         2. Implement the basic power electronics control algorithm such as PWM techniques using DSPs         Course Contents         Mod. No.       Details       Hours         1       Review of microcontrollers and digital signal processors, architecture, peripheral modules.       04         2       Typical processors for control implementation, memory organization, CPU details       04         3       Multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.       04         4       Structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.       04         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, 04       04		Course Objectives				
1. To understand comparison of microcontrollers and digital signal processors.         2. To learn and implement DSP programming         3. To understand internal details of DSP architecture, peripheral, addressing modes, interrupt structure, hardware multiplier         Course Outcomes         Upon successful completion of the course, students should be able to         1. Understand and use new /advanced DSP         2. Implement the basic power electronics control algorithm such as PWM techniques using DSPs         Course Contents         Mod. No.       Details       Hours         1       Review of microcontrollers and digital signal processors, architecture, peripheral modules.       04         2       Typical processors for control implementation, memory organization, CPU details       04         3       multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.       04         4       Binary file formats for processor executable files, Typical 04       04         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, ot4       04	Objectives	*				
2. To learn and implement DSP programming         3. To understand internal details of DSP architecture, peripheral, addressing modes, interrupt structure, hardware multiplier         Course Outcomes         Upon successful completion of the course, students should be able to         1. Understand and use new /advanced DSP         2. Implement the basic power electronics control algorithm such as PWM techniques using DSPs         Mod. No.       Details       Hours         1       Review of microcontrollers and digital signal processors, architecture, peripheral modules.       04         2       Typical processors for control implementation, memory organization, CPU details       04         3       Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.       04         4       Structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.       04         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, 04       04	0		ors.			
3. To understand internal details of DSP architecture, peripheral, addressing modes, interrupt structure, hardware multiplier         Course Outcomes         Upon successful completion of the course, students should be able to         1. Understand and use new /advanced DSP         2. Implement the basic power electronics control algorithm such as PWM techniques using DSPs         Course Contents         Mod. No.       Petails       Hours         1       Review of microcontrollers and digital signal processors, architecture, peripheral modules.       04         2       Typical processors for control implementation, memory organization, CPU details       04         3       Addressing modes interrupt structure, hardware nultiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.       04         4       Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.       04         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, stability       04						
interrupt structure, hardware multiplierCourse OutcomesUpon successful completion of the course, students should be able to1.Understand and use new /advanced DSP2.Implement the basic power electronics control algorithm such as PWM techniques using DSPsCourse ContentsMod. No.DetailsHours1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware043Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.044Structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.04			g modes			
Course OutcomesUpon successful completion of the course, students should be able to1.Understand and use new /advanced DSP2.Implement the basic power electronics control algorithm such as PWM techniques using DSPsCourse ContentsMod. No.DetailsHours1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware043Binary file formats for processor executable files, Typical044structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04			5 1110 400,			
Upon successful completion of the course, students should be able to1.Understand and use new /advanced DSP2.Implement the basic power electronics control algorithm such as PWM techniques using DSPsCourse ContentsMod. No.DetailsHours1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04						
1.Understand and use new /advanced DSP2.Implement the basic power electronics control algorithm such as PWM techniques using DSPsCourse ContentsMod. No.DetailsHours1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware nultiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical old structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	Upon suce					
2. Implement the basic power electronics control algorithm such as PWM techniques using DSPs         Course Contents         Mod. No.       Details       Hours         1       Review of microcontrollers and digital signal processors, architecture, peripheral modules.       04         2       Typical processors for control implementation, memory organization, CPU details       04         3       Addressing modes interrupt structure, hardware       04         3       Binary file formats for processor executable files, Typical of the structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.       04         4       Binary file formats for processor executable files, Typical of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.       04         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, stability						
using DSPsCourse ContentsMod. No.Course Contents1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04			techniques			
Course ContentsMod. No.DetailsHours1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04						
1Review of microcontrollers and digital signal processors, architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04						
1architecture, peripheral modules.042Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	Mod. No.	Details	Hours			
2Typical processors for control implementation, memory organization, CPU details043Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	1		04			
2memory organization, CPU details3Addressing modes interrupt structure, hardware multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.044Binary file formats for processor executable files, Typical digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	1		04			
memory organization, CPU detailsAddressing modes interrupt structure, hardware04multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.04Binary file formats for processor executable files, Typical04structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.04Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.04Numerical integration methods. Comparison in terms of time step, stability04	2		04			
3multiplier, pipelining, Fixed and floating-point data representations, Assemblers, linkers and loaders.4Binary file formats for processor executable files, Typical structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04						
representations, Assemblers, linkers and loaders.4Binary file formats for processor executable files, Typical044structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	-		04			
4Binary file formats for processor executable files, Typical044structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.045Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	3					
4       structure of timer interrupt driven programs, Implementing digital processor based control systems for power electronics.         5       Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.       04         6       Numerical integration methods. Comparison in terms of time step, stability       04						
digital processor based control systems for power electronics.Reference frame transformations, PLL implementations, machinemodels harmonic and reactive power compensation, space vectorPWM.Numerical integration methods. Comparison in terms of time step, stability			04			
5Reference frame transformations, PLL implementations, machine models harmonic and reactive power compensation, space vector PWM.046Numerical integration methods. Comparison in terms of time step, stability04	4					
5       models harmonic and reactive power compensation, space vector         9WM.       PWM.         6       Numerical integration methods. Comparison in terms of time step, stability						
PWM.         6       Numerical integration methods. Comparison in terms of time step, stability       04	_		04			
6 Numerical integration methods. Comparison in terms of time step, 04 stability	5					
stability			04			
	6		04			
Multitasking concepts for power electronics implementations 06		Multitasking concepts for power electronics implementations,	06			
7 The need for multitasking, various multitasking method	7		00			

Text Books		
1.N. Mohan, "Power Electronics", third edition, John Wiley and Sons.		
Reference Books		
K. Ogata, "Discrete-Time Control Systems", second edition, Pearson Education Asia.		

**4.** Programmable Logic Controllers (SK-BTE004)

### **Course Objective:**

- 1. Discuss the purpose, functions, and operations of a PLC
- 2. Explain basic components of the PLC and how they function

Course Outcome: Students will be able to

- 1. Generate and print out a ladder logic report using PLC software
- 2. Create a PLC project using PLC
- 3. Configure the I/O for a PLC project using PLC

**Course content: 1.** Introductions to the purpose, functions, and operations of the PLC, Identification of various components of the PLC, 2. Introduction to PLC ladder logic and basic programming concepts, Establishing communications with the PLC, 3. Definitions of conditional inputs and outputs, Electrical continuity versus logical continuity, 4. PLC timer and counter concepts and programming applications, 5. Programming applications using sequencers.

# Appendix -I

# Value Added Courses

### 1. Soft -Computing I (VA-BTE001)

Course Objective: Provide knowledge of MATLAB/ SCILAB.

Course Outcome: Students will be able to develop good applications using MATLAB/ SCILAB

**Course content: 1.** Basic Introduction and Overview, 2.Variables and Data types, 3.Operation,. Control Structure, 4.Function, Introduction to different tool boxes available, 5. Introduction to MATLAB simulink

2. Open source operating systems and Software (Linux, python/ SciLab/octave/ R) (VA-BTE003)

#### 3. Finite Element Methods for Electrical Engineering (VA-BTE005)

**Course objective**: Introduce how the finite element method can be used as a numerical tool to solve differential equations.

**Course Objective**: Students will be able to solve Electrical engineering problems using finite element methods

**Course content: 1.** Introduction to the mathematical description of Electrical engineering problems, 2. Revision of numerical solutions to differential and algebraic equations, Overview of the finite element method - Variational approach, 3. Ritz technique, Galerkin method, Approximation functions for one, two and three-dimensional elements, 4. Application of the FEM to Analyzing electrical circuits 5. Programming FEM in open source

#### 4. ETAP and WAMS (VA-BTE009) Course Objective:

- Introduce ETAP software
- Discuss the synchro phasor measurement techniques in a Wide Area Control through the basic building blocks of GPS satellite synchronized clocks, the architecture of the Phasor Measurement Units (PMUs), and The communications equipment.

#### Course Outcome: Students will be able to

1. Use ETAP as an analysis platform for the designing, simulating, operating and automation of generation and distribution of power systems.

2. Understand the synchro phasor measurement techniques in a Wide Area Control

**Course content:** 1. Build power systems and simulate the power, current and voltage flow, Single Line diagram creation and analysis, run and Analyze AC power circuits, 2. Run load flow analysis on one line diagram, run Short Circuit analysis. 3. Introduction to Synchro Phasor & WAMS Technologies, Synchro Phasor needs and benefits for Operations, 4. Planning and Control Vision for Synchro Phasor & Online Stability Solutions Fundamental building blocks for WAMS and Synchro Phasor Phasor Platform Architecture, 5. PMU standard and communication.