Sardar Patel College of Engineering, Andheri (West), Mumbai 400058

Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute under Mumbai University) Andheri (W), Mumbai – 400058

COURSE CONTENTS

Sem. III

S. Y. B.Tech. (ELECTRICAL) ENGINEERING

Regulation-2023 (R23)

List of Courses

BS-BTE301	Laplace Transform, Vector calculus & Linear Algebra
PC-BTE301	Analog Circuits
PC-BTE302	Electrical Networks
PC-BTE303	Digital Electronics
PC-BTE304	Electromagnetic Fields & Waves
PC-BTE 351	Analog Circuits Laboratory
PC-BTE352	Electrical Network Laboratory
PC-BTE353	Digital Electronics Laboratory
PC-BTE354	Electromagnetic Fields & Waves Laboratory
VE-BTE001	Value Education courses- Environmental Science and Sustainability

Cours	se Code	Course Name			
BS-BTE301		Laplace Transform, Vector calculus & Linear Alg	ebra		
Course pr	e-requisites	DCCN(BS-BT101), ICDE(BS-BT201)			
		Course Objectives			
The object	ives of this co	ourse are			
1. To equ	learn Laplace ations.	e & Inverse Laplace transforms and its application to solve differen	ntial		
2. To	understand co	oncept of Vector calculus.			
3. To	learn various	matrices, operations and important theorems.			
		Course Outcomes			
Upon succ	essful comple	etion of the course, students should be able to			
1. 501	ve problems	based on Laplace and inverse Laplace transform. Apply theory			
UI I vali	Laplace trailsi	cornis to evaluate real integrais and solve initial & boundary			
	ve problem b	ased on vector differentiation & vector Integration			
2. 501 3 Fin	 Solve problem based on vector differentiation & vector integration. Find rank of matrices. Figen values and Figen vectors of matrices. 				
5. 111	5. Find fank of matrices, Eigen values and Eigen vectors of matrices				
		Course Content			
Module No.					
		Details	Hrs.		
	Laplace Tra	Details Insforms pounded variation (Statement only) Laplace Transforms of	Hrs.		
	Laplace Tra Function of t 1, <i>e^{at}</i> , sin <i>at</i> , c	Details insforms bounded variation (Statement only) Laplace Transforms of $\cos at$, $\sinh at$, $\cosh at$, t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems,	Hrs.		
1	Laplace Tra Function of t 1, e ^{at} , sin at, c change of sca	Details ansforms bounded variation (Statement only) Laplace Transforms of $\cos at$, $\sinh at$, $\cosh at$, t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$	<i>Hrs.</i> 05		
1	Laplace Tra Function of t 1, e ^{at} , sin at, c change of sca Convolution	Details ansforms bounded variation (Statement only) Laplace Transforms of $\cos at$, $\sinh at$, $\cosh at$, t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms.	<i>Hrs.</i> 05		
1	Laplace Tra Function of \mathfrak{l} 1, e^{at} , sin at , c change of sca Convolution Inverse Lap	Details Insforms bounded variation (Statement only) Laplace Transforms of $\cos at$, $\sinh at$, $\cosh at$, t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms. Jace Transforms	<i>Hrs.</i> 05		
1	Laplace Tra Function of b 1, e ^{at} , sin at, c change of sca Convolution Inverse Lap Evaluation convolutio	Details ansforms bounded variation (Statement only) Laplace Transforms of cos <i>at</i> , sinh <i>at</i> , cosh <i>at</i> , t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms. Jace Transforms n of Inverse Laplace Transforms using partial fractions, on theorem, shifting theorems and other properties. Application of	<i>Hrs.</i> 05		
2	Laplace Tra Function of b 1, e ^{at} , sin at, c change of sca Convolution Inverse Lap Evaluation convolutio Laplace Tr ordinary d	Details ansforms bounded variation (Statement only) Laplace Transforms of cos <i>at</i> , sinh <i>at</i> , cosh <i>at</i> , t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms. Jace Transforms n of Inverse Laplace Transforms using partial fractions, on theorem, shifting theorems and other properties. Application of ransform to solve initial & boundary value problems involving ifferential equation with one dependent variables.	<i>Hrs.</i> 05 05		
1	Laplace Tra Function of b 1, e ^{at} , sin at, c change of sca Convolution Inverse Lap Evaluation convolutio Laplace Tr ordinary da	Details ansforms bounded variation (Statement only) Laplace Transforms of cos at, sinh at, cosh at, t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms. Jace Transforms n of Inverse Laplace Transforms using partial fractions, on theorem, shifting theorems and other properties. Application of ransform to solve initial & boundary value problems involving ifferential equation with one dependent variables. Eventiation: Introduction of Scalar point function & vector point	<i>Hrs.</i> 05 05		
1	Laplace Tra Function of b 1, e ^{at} , sin at, c change of sca Convolution Inverse Lap Evaluation convolutio Laplace Tr ordinary da Vector Diffe function, Gra	Details ansforms bounded variation (Statement only) Laplace Transforms of cos <i>at</i> , sinh <i>at</i> , cosh <i>at</i> , t^n , $erf(\sqrt{t})$, $J_0(t)$, Shifting theorems, ale, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ theorem, Evaluation of real integrals using Laplace transforms. Jace Transforms n of Inverse Laplace Transforms using partial fractions, on theorem, shifting theorems and other properties. Application of ransform to solve initial & boundary value problems involving ifferential equation with one dependent variables. Prentiation: Introduction of Scalar point function & vector point adient, Geometrical meaning of Grad, Directional Derivative,	Hrs. 05 05		

1	Vector Integration -I: Vector integrals – Line and Surface Integrals, Green	
4	theorem in plane. Problems based on work done. Conservative force field.	05
5	Vector Integration -II: Stoke's theorem, Gauss's Divergence theorem. Applications of Vector Integrals to Electrical engineering	05
6	Matrices Orthogonal, Symmetric, Skew-symmetric, Hermitian, Skew-Hermitian & Unitary matrices and their elementary properties. Elementary operations and their use in getting the Rank, Normalform of a matrix, PAQ form, Consistency of system of linear homogeneous and non-homogeneous equations.	04
7	Eigen values and Cayley Hamilton Theorem Eigen-values and Eigenvectors of a matrix, Cayley- Hamilton theorem, Function of a matrix, Diagonalization of a matrix	04
	Term Work	
Term wor	k shall comprise of	
A tota	l of 10 tutorials to be taken batch wise covering the entire syllabus	

Text Books

1. B S Grewal (2014), "Higher Engineering Mathematics", Khanna Publications, 43rdEdition, ISBN 8174091955, 1315 Pages

Reference Books

- 1. Erwin Kreyszig (2010), "Advanced Engineering Mathematics" WileyEastern Limited, Singapore 10th edition, ISBN 8126554231, 1148 Pages.
- 2. Text book of Engineering Mathematics , N.P.Bali , Laxmi Publications, 9th edition,ISBN:978-81- 318-0832-0
- 3. Murray Spiegel. "Vector Analysis" Schaum's Outline Series.

Sr. No.	Examination	Module
1	T-I	1, 2 and part of 3
2	T-II	Remaining part of 3, 4 andpart of module 5
3	End Sem	1 to 7

Γ

Course Code Course Name			
PC-BT	PC-BTE301 Analog Circuits		
Course pre	-requisites	Electronic circuits	
		Course Objectives	
The objective 1. 1 2. 1 3. 1 4.	es of this cou Introduce po Introduction Introduce ac Discuss neg	arse are wer amplifiers and frequency response of op-amp and FET. and application of 555timer and voltage regulator. tive filters. ative feedback amplifiers and oscillators	
		Course Outcomes	
1. 1 2. 1 3. 1 4. (5.	Design powe Illustrate the Design volta Compare cire Design activ	functions of basic building blocks of 555 timer ge regulators. cuits using negative feedback. ve filters and to select appropriate components to design oscillato	or.
Madula	1	Course Content	
No.		Details	Hrs.
1	Power Am Introduction AB, C	aplifiers: on to different types of Large signal amplifiers viz. Class A, B,	05
2	Frequency and op-am	response: BJT ap.	05
3	555timer: Introduction Stable mu	on to the block diagram, Applications: a stable and mono lti vibrator with applications of each.	05
4	Voltage re FixedVolt	gulator: ageregulator:78XX,79XX,AdjustableVoltageregulator:723	07
5	Active File First and S	ters: Second order LP, HP, BP & band reject filters.	05

6	Feedback amplifiers(Negative Feedback): Introduction to negative and positive feedback, Negative feedback Current, Voltage: Series and Shunt type Effect of Negative feedback on: Input impedance, output impedance Voltage gain, current gain and bandwidth	08
7	Oscillators: Frequency of oscillation, Condition for maintenance of oscillations of: (i) RC phase shift (ii)Wien Bridge, Crystal oscillator.	07

Text Books

- 1. Robert Boylestad and Louis Nashelsky, "Electronic devices and circuits", Prentice HallofIndia, London
- 2. Donald A. Neamen, "ElectronicCircuitAnalysisandDesign", TataMcGraw-Hill publishing Company Limited.
- 3. Gayakwad Ramakant,"Op-Amps and Linear Integrated Circuits", PHI publication
- 4. K.R.Botkar,"IntegratedCircuits",KhannaPublication.
- 5. David Bell, "ElectronicDevicesandCircuits", 5thEdition, OxfordUniversity Press
- 6. AllenMottershead, "ElectronicDevicesandCircuitsanintroduction", Prentice Hall of India.

Reference Books

- 1. Bhargava, Kulshreshtha, Gupta: "Basic Electronics and Linear Circuits" NITTTR Chandigarh, 2nd edition, 2013.
- 2. David Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008
- 3. Allen Mottershead,"Electronic Devices and Circuits an introduction", Prentice Hall of India, 1979
- 4. K. R. Botkar, "Integrated Circuits", Khanna Publication, 10th edition, 1987

Sr. No.	Examination	Module
1	T-I	1,2,3
2	T-II	4,5
3	End Semester	01-07
	Exam	

Course Code	Course Name
PC-BTE302	Electrical Networks

Course pre-requisites

Basic Electrical Engineering

Course Objectives

The objectives of this course are to

- 1. Analyze basic electrical circuits using various network theorems.
- 2. Analyze transient and steady state performance of RLC circuits in time domain.
- 3. Analyze transient and steady state performance of RLC circuits in frequency domain
- 4. Discuss network functions and their applications

Course Outcomes

Upon successful completion of the course, students should be able to

- 1. Apply network theorems for the analysis of electrical circuits.
 - 2. Obtain transient and steady-state response of electrical circuits using time domain and frequency domain methods.
 - 3. Determine network function of a given electrical network

Course Content

Module No.	Details	Hrs.
	DC Network Analysis (Steady State): KVL, KCL, Networks with	03
1	Dependent Sources, Mesh and Super-mesh analysis, Nodal and Super	
1	node analysis, Superposition theorem, Source transformation,	
	Thevenin's theorem, Norton's theorem, Millman's theorm.	
	AC Network Analysis (steady state): KVL, KCL, Mesh and Nodal	05
2	Analysis, Superposition theorem, Source transformation, Thevenin's	
2	theorem, Norton's theorem, Maximum Power transfer theorem, series	
	and parallel resonance.	
	Solution to Differential Equations - General and Particular solutions of	02
2	first order differential equations, Properties of exponential response,	
5	Time constant, integrating factor, initial conditions, Solution of Second	
	order differential equations.	
	RL, RC, RLC Circuit Analysis (Transient) - Initial Conditions in	07
	Network elements.	
4	Series and parallel RLC Circuit Analysis-Over-damped, critically	
4	damped and under- damped RLC circuit, Lossless LC circuits. Analysis	
	of RLC Networks excited by external Energy Sources like step, ramp,	
	impulse and sinusoidal source.	

_			
	5	Electrical Circuit Analysis Using Laplace Transform: Review of Laplace Transform, Laplace Transform for standard inputs, inverse Laplace transform, Analysis of electrical circuits using Laplace Transform.	05
	6	Network Functions: N etwork functions for one port and two port networks, calculation of network functions.	03
	7	Two Port Network: Z and Y parameters, input and output impedance in terms of two port parameters, Relation between Z and Y parameters, Introduction to ABCD and h-parameters.	03

Text Books		
1.	M.E. Van Valkenburg: Network Analysis. Prentice-Hall of India Pvt. Limited,	
	Eastern Economy Edition.	
2.	Roy Chaudhary D.: Networks & Systems, New Age International Publisher	
Reference Books		
1.	W. H. Hayt and J. E. Kemmerly: Engineering Circuits Analysis, Tata-	
	McGraw HILL Publicatio.	
2.	Chakrabarti A.: Circuit Theory (Analysis &Synthesis), Dhanpat Rai &Co.	
3.	Schaum's Outline Series: Electrical network.	
4.	M.E. Van Valkenburg: Introduction to Modern Network Synthesis, Wiley Eastern Limited	

Sr. No.	Examination	Module
1	T-I	1,2,3
2	T-II	3, 4
3	End Sem	1-7

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058 Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

Course Code	Course Name
PC-BTE303	Digital Electronics

Course pre-requisites

BEE

Course Objectives

The objectives of this course are

- 1. Understand the number systems and coding.
- 2. Discuss the features of combinational circuits.
- 3. Understand flip flops and their applications.
- 4. Remember different logic families, their interfacing and memories

Course Outcomes

- 1. Differentiate between number systems and classify different binary codes.
- 2. Analyze and design combinational circuits and Sequential circuits.
- 3. Solve problems using Finite state machines.
- 4. Classify different logic families and memories.

Course Content		
Module No.	Details	Hrs.
1	Number System and Codes: Binary, Octal, Hexadecimal number systems, Conversion from one system to another, Binary Arithmetic. BCD, GRAY, Alphanumeric codes, Error detecting codes-odd and even parity, error detecting and correcting codes-Hamming Codes	04
2	Combinational circuits: Derive Gates, Max terms, Min terms, SOP and POS implementation, K-Maps and their use in simplifying Boolean expressions, Implementing a logic function using universal Gates.	04
3	 Combination Logic Circuit Design: (i) Adders, Subtractors (Half and Full), carry look ahead adder, serial adder, magnitude comparators (ii) Arithmetic logic units, multiplexers, demultiplexers parity encoder, code converter. Hazards in Combinational circuits. 	08
4	Sequential Logic Circuits: Comparison of combinational and sequential circuits, Flip-flops: SR, T, D, JK, converting one flip flop to another. Counter: Ripple counter, up-down counter, Synchronous counter, and designing of counters, state transition diagram, unused states and locked conditions.	08
5	Registers: SISO, SIPO, PISO, PIPO registers, ring counter, twisted ring counter, pseudorandom sequence generator.	04

6	Logic Families: Characteristics of digital logic families, TTL, CMOS logic, interfacing CMOS and TTL, Tri- state logic. Semiconductor memories : Content addressable memory (CAM), ROM as a PLD, Programmable logic array, Programmable array logic.	06
7	Introduction to finite state machine: State table, state diagram, next state analysis, Mealy and Moore state machines. State machine reduction.	08

For Self-Study: Memory organization and operation, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM)

Text Books 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009. 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016 Reference Books 1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

2. William I. Fletcher, "An Engineering Approach to Digital Design", PHI.

Sr. No.	Examination	Module
1	T-I	1,2,3(i)
2	T-II	3(i),4
3	End Sem	01-07

Course Code		Course Name	
PC-BTE304		Electromagnetic Field and Waves	
Course pre-requisites Basic Electrical engineering			
		Course Objectives	
 To introduce the basic mathematical concepts related to electromagnetic vector fields. To impart knowledge on concepts of electrostatics, electric potential, energy density and its applications. To impart knowledge on concepts of magneto statics, magnetic flux density, scalar and vector magnetic potential and its applications. Explain time varying electric and magnetic fields and wave theory 			
		Course Outcomes	
Upon succe	essful comple	tion of the course, students should be able to	
 Interpret electromagnetic field data and identify the parameters that affect it. Interpret and apply Maxwell's equations to analyze electromagnetic phenomena. Solve problems involving the behavior of charged particles in electric and magnetic fields. Apply mathematical techniques and electromagnetic field theory to analyze and design simple electromagnetic systems. 			
		Course Content	
Module No.		Details	Hrs.
1	Review of Vector alg and vecto coordinate calculus c operator d	Vector Calculus gebra-addition, subtraction, components of vectors, scalar or multiplications, triple products, Three orthogonal systems (rectangular, cylindrical and spherical). Vector lifferentiation, Partial differentiation, integration, vector el, gradient, divergence and curl, Conversion of a vector	06
2	Static Elec Coulomb's charges. L and its app Calculation Electric dip	ctric Field s law, Electric field intensity, Electrical field due to point ine, Surface and Volume charge distributions. Gauss law plications. Absolute Electric potential, Potential difference, n of potential differences for different configurations. pole, Electrostatic Energy and Energy density	07
	Conducto	rs, Dielectrics and Capacitance	06
3	Current an current, I Permittivit wire line, I and Poiss equations.	d current density, Ohms Law in Point form, Continuity of Boundary conditions of perfect dielectric materials. y of dielectric materials, Capacitance, Capacitance of a two Poisson's equation, Laplace's equation, Solution of Laplace on's equation, Application of Laplace's and Poisson's	

4	Static Magnetic Fields Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors	07
5	Magnetic Forces, Materials and Inductance Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions, Magnetic circuits, inductances and mutual inductances.	06
6	Time Varying Fields and Maxwell's Equations Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Conditions.	05
7	Electromagnetic Waves Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors. Poynting theorem	05

Text Books:

- 1. W. Hayt, "Engineering electromagnetic", 8th Edition, McGraw Hill publication, 2012
- 2. E. C. Jordan & K.G. Balmain, "Electromagnetic Waves and Radiating Systems", 2 nd edition, Pearson Education, 2015
- 3. R. K. Shevgaonkar "Electromagnetic waves", McGraw-Hill Education (India) Pvt. Limited, 2006

Reference Books:

- 1. Edminister, "Schaum's series in electromagnetic", 3rd Edition, McGraw Hill publications, 1989
- 2. N. Narayan Rao, "Elements of electromagnetic",4th Edition, PHI publication, 2001
- 3. S. Seely, "Introduction to electromagnetic fields", McGraw Hill,1958
- 4. David K. Cheng, "Field and electromagnetic", 2nd Edition, Addison Wesley, 1999
- 5. Corson and Lerrain, "Electromagnetic", 2nd Edition, CBS publications, 1986

Evaluation:

Sr No.	Name of the exam	Modules
1	T-I	1,2,3
2	T-II	3,4
3	End semester examination	1-7

Analog Circuits Laboratory

Course Code	Course Name
PC-BTE351	Analog Circuits Laboratory

Course pre-requisites

Electronic Circuits

Course Objectives

The objectives of this course are

- a. Study frequency response of Op-Amp and BJT, oscillators
- b. Use IC 555 as mono-stable and a stable multi-vibrator.
- c. Introduction to active filters, negative feedback amplifiers.
- d. Learn to develop application based on digital electronics circuit

Course Outcomes

- 1. Compare frequency response of Op-Amp and BJT by plotting it experimentally.
- 2. Able to select component values for astable and mono-stable multi-vibrators using IC 555
- 3. Able to use voltage regulators using IC 723, to design active filters and to select appropriate components to design oscillator.
- 4. Develop managerial skills

Course Content			
Module No.	Details	Hrs.	
1	Frequency Response of Op-amp	02	
2	Astable multi-vibrator using 555	02	
3	Mono-stable multi-vibrator using 555	02	
4	Low voltage regulator	02	
5	High voltage Regulator	02	
6	First order LPF.	02	
7	Wein Bridge Oscillator	02	
8	RC phase shift Oscillator	02	
9	Gain of CE amplifier with and without Feedback (CE bypass Capacitor)	02	
	Text Books		
1.	Robert Boylestad and Louis Nashelsky, "Electronic devices and		
	circuits", Prentice HallofIndia, London		
2. Donald A. Neamen, "ElectronicCircuitAnalysisandDesign", TataMcGraw-Hill			
	publishing Company Limited.		
3.	3. Gayakwad Ramakant," Op-Amps and Linear Integrated Circuits", PHI publication		
4.	4. K.R.Botkar,"IntegratedCircuits",KhannaPublication.		
5.	5. David Bell,,,ElectronicDevicesandCircuits",5thEdition,OxfordUniversity Press		
6.	6. AllenMottershead, "ElectronicDevicesandCircuitsanintroduction", Prentice Hall of India.		
	Reference Books		

- 1. Bhargava,Kulshreshtha,Gupta:,,BasicElectronicsandLinearCircuits"TTTI Chandigarh,Tata McGrawHill, New Delhi.
- 2. D. Roy Choudhari and Shail B. Jain," Linear Integrated Circuits", New age International Publishers.
- 3. David Bell, "ElectronicDevices and Circuits", 5th Edition, Oxford University Press Allen Mottershead, "ElectronicDevices and Circuits an introduction", Prentice Hall of India

Course Code	Course Name	
PC-BTE352	Electrical Network Laboratory	
Course pre-requisites	Basic Electrical Engineering	
	Course Objectives	
The objectives of this co	burse are	
1. Introduction	1. Introduction to MATLAB / SCILAB/ e-sim/ Pspice/ SEQUEL software for circuit	
analysis.		
2. To simulate	electrical circuits using simulation software.	
3. Gain practical experience on simulation and working of electrical circuits.		
	Course Outcomes	
Upon successful comple	tion of the course, students should be able to	
1. Evaluate stea	dy state and transient state response of DC and AC electrical circuits.	
2. Analyze DC/	AC electrical circuits through simulation software.	
3. Analyze DC/	AC electrical circuits through experimental setup.	

Course Content		
Module No.	Details	Hrs.
1	DC network Simulation	02
2	AC network Simulation-I	02
3	AC network Simulation-II (with dependent source)	02
4	Transient Response of RL, RC and RLC network for step input voltage (through Simulation)	02
5	Transient and steady state Response of RL, RC and RLC network for sinusoidal input voltage (through Simulation)	02
6	Transient Response of RL, RC and RLC network using hardware setup.	02
7	Series resonance	02
8	Obtaining response of a given electrical network using transfer function (Code).	02
9	Pole – zero plot of a given transfer function	02

List of Class Assignments

1	DC networks Theorems
2	AC networks Theorems
3	Time domain analysis of RLC circuits
4	Laplace Transform and analysis of RLC circuits
5	Network functions and two port networks

Reference Books

- 1. M.E. Van Valkenburg: Network Analysis. Prentice-Hall of IndiaPvt. Limited, Eastern Economy Edition.
- 2 Roy Chaudhary D.: Networks & Systems, New Age international publisher
- 3. W. H. Hayt, and J. E. Kemmerly: Engineering Circuits Analysis, Tata-McGraw HILL Publication.
- 4. Chakrabarti A.: Circuit Theory (Analysis &Synthesis), Dhanpat Rai &Co.
- 5. Schaum"s Outline Series: Electrical network.
- 6 M.E. Van Valkenburg: Introduction to Modern Network Synthesis, Wiley Eastern Limited

Course Code		Course Name	
PC-BTE353		Digital Electronics Laborato	ry
Course pro	e-requisites	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*
		Course Objectives	
The objecti	ves of this co	burse are	
1.	Understand	the basics of circuit making on bread board	
2.	Test the wor	king of the circuit	
3.	Introduce s	imulation using software	
4.	Learn to de	velop application based on digital electronics circuits.	
		Course Outcomes	
Upon succ	cessful comp	etion of the course, students should be able to	
1.	Design com	binational and sequential circuits using discrete component	nts.
2.	Test the des	igned circuit to get required output.	
3.	Simulate co	mplex combinational and sequential circuits.	
4.	Write and p	resent project report in a team.	
	•	Course Content	
Module No.		Details	Hrs.
1	Logic Ex	pressions simplification and implementation.	02
2	Half Add	er and Half subtractor using gate IC"s	02
3	Code Cor	overter: Binary to Gray, BCD to XS-3.	02
4	IC7483 as	s 4bit adder and subtractor	02
5	Multiplex	er 4:1 using gates.	02
6	Simulate	De-multiplexer1:16 internal Gate circuit.	02
7	Flip-Flop	s: S-R, J-K, D, T using gates.	02
8	BCD Cou	inter implementation using Flip Flops.	02
9	Simulatio	n of Ring Counter, Twisted Ring Counter.	02
10	PLD Sim	ulation	02

Text Books

1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

2 M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016

Reference Books

1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

2 William I. Fletcher, "An Engineering Approach to Digital Design", PHI.

Course Code		Course Name			
PC-BTE354		Electromagnetic Field and Waves Laborato	ory		
Course p	Course pre-requisites				
		Course Objectives			
The objec	tives of this co	ourse are			
1.	To understand	d and concept of vector addition, vector calculus, co-ordinate	e systems, static		
	and time vary	ing fields and electromagnetic waves more precisely by visua	lize aid.		
2.	To familiarize	e the students by introducing FEMM-4.2 simulation software	and help them to		
	Simulate and	analyze different Electromagnetic circuit			
		Course Outcomes			
Upon succ	cessful comple	tion of the course, students should be able to			
1.	Understand c	oncepts of vector calculus and underlying theories in electros	statics, magneto		
	statics, and ti	me-varying electromagnetic fields using field plots generate	ed by formulae		
	and Finite Ele	ment Method (FEM) based computations.			
2.	Apply knowle	edge of electromagnetic fields in real time application.			
3.	Analysis of et	fect electromagnetic field in electromagnetic circuits.			
4.	4. Build and simulate core electromagnetic circuits and power apparatus using FEMM S/W.				
	-	Course Content	-		
Module		Details	Hrs.		
<i>No.</i>	A 111		02		
1	Addition &	² Products of two vectors.	02		
2	Coordinate	systems (Cartesian, Cylindrical and Spherical).	02		
3	Position ve	ctor and distance vector.	02		
4	Curl, Dive	igence and gradient of a field.	02		
5	Variation of	of electrostatic fields.	02		
6	Curl free s	atic electric field.	02		
	Variation o	or electrostatic fields over multiple dielectric materials.	02		
8	Electric flu	x density.	02		
9	Force on a	single current carrying conductor.	02		
10	Force betw	een two current carrying conductors.	02		
11	Magnetic V	rector potential.	02		
12	Variations	of time varying field.	02		

Text Books

- 1. W.Hayt, "Engineering electromagnetic", McGraw Hill.
- 2. E.C.Jordan &K.G. Balmain, "Electromagnetic Waves and Radiating Systems", Prentice Hall of India.

Reference Books

- 1. Edminister, "Schaum's series in electromagnetic", McGraw Hill publications.
- 2. N.NarayanRao, "Elements of electromagnetic", PHI publication.
- 3. S.seely, "Introduction to electromagnetic fields", McGraw Hill.
- 4. David K. cheng, "Field and electromagnetic", Addison Wesley.
- 5. Corson and lerrain, "Electromagnetic", CBS publications

Value Education Course- Environmental Science and Sustainability

Course Code	Course Name
VE-BTE001	Environmental Science

Course pre-requisites

Course Objectives

The objectives of this course are

- 1. To sensitize to the ever-increasing environment problems.
- 2. To acquire knowledge about environmental pollution.
- 3. To acquire knowledge with respect to renewable energy and its positive impact on environment.
- 4. To be aware of the national and international concern for environment for protecting the environment.

Course Outcomes

- 1. Understand the requirement of environment science and sustainability and apply it in the field of electrical engineering
- 2. Propose specifications to comply with norms of environment engineering
- 3. Describe laws and regulations pertaining to health, safety and environment
- 4. Apply evaluation tool such as GRIHA to help design, build, operate, and maintain a resource efficient environment management system

Course Content				
Module No.	Details	Hrs.		
1	Introduction to Environmental Science and Pollution: Biotic and Abiotic Environment, Adverse effects of environment, Types of environmental pollution Pollution - Water pollution, Air pollution, Solid waste management, Control Strategies of different environmental problems	05		
2	Introduction to Renewable Energy: Solar, Wind, Geothermal, Ocean (Tidal), Biomass–Basics, Conservation of natural resources. Environmental and economic impact of each type of renewable energy, Energy Management	07		
3	Sustainability and Sustainable Energy Management: Introduction to Sustainaility, sustainable strategies, Sustainable technologies, green commodities, Carbon credits, carbon emission monitoring, introduction to energy audit	06		
4	Hazard Assessment, Prevention, and Control: Stress and Safety, Safety and Health Training, Mechanical Hazards and Machine Safeguarding, Fire Hazards and Life Safety, Ethics and Safety, Hazard Analysis/Prevention and Safety Management, Environmental Safety and ISO 14000 (Environmental Management).	05		
5	Introduction to National Rating System GRIHA (Green Rating	05		

For Integrated Habitat Assessment): An evaluation tool to help	
design, build, operate, and maintain a resource-efficient built	
environment. Case studies of GRIHA registered buildings	

Text Books				
1. Jagdish Krishnawamy, R J Ranjit Daniels," Environmental Studies", Wiley India				
Private Ltd. New Delhi. 4. An Indita Basak, Environmental S				
Reference Books				
1. GRIHA Manual Volume 1 - Ministry of New and Renewable				
Energy, Government of India, New Delhi.				
2. ISO 14001:2004(E) - Environmental management systems				
Requirements with guidance for use.				

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute under Mumbai University) Andheri (W), Mumbai – 400058

COURSE CONTENTS

Sem. IV

S. Y. B.Tech. (ELECTRICAL) ENGINEERING

Regulation 2023(R23)

List of Courses

BS-BTE401	Transforms, Statistics and Probability
PC-BTE401	Power Generation, Transmission & Distribution
PC-BTE402	Measurement and Instrumentation
PC-BTE.403	Electrical Machines-I
PC-BTE404	Microprocessor and Microcontroller
PC-BTE405	Signals and Systems
PC-BTE452	Measurement and Instrumentation Laboratory
PC-BTE453	Electrical Machines I Laboratory
PC-BTE454	Microprocessor and Microcontroller Laboratory

Cours	se Code	Course Name	
BS-B	BS-BTE401 Transforms, Statistics and Probability		
Course pr	Course pre-requisites DCCN(BS-BT101), ICDE(BS-BT201), LVCLA(BS-BTE301)		
1	•	Course Objectives	,
The object	ives of this co	ourse are	
1. Inti	roduce Fourie	r series	
2. Intr	roduce Fourie	r transforms & Z-transforms	
3. Intr	roduce Hypot	hesis testing	
4. Inti	roduce Statist	Ical methods, probability distribution	
Upon succ	essful comple	ation of the course, students should be able	
1	Solve proble	ms on Fourier series	
2.	Solve proble	ms based on Fourier transforms & Z-transforms	
3.	Solve proble	m in basic statistics, probability, probability distribution	
4.	Solve proble	ms based on testing of hypothesis	
	r	Course Content	
Module		Details	Hrs.
<i>No.</i>			
	Fourier So	eries & Integrals	
	Determina	tion of Fourier constants. Dirichlets conditions. Fourier series	
	for $f(x)$.	$x \in [c, c+2\pi]$ and $x \in [c, c+2L]$. Parseval's Identity.	04
	Fourier Se	ries half range & complex form Fourier series of Odd and	
	Even funct	ions Half range Fourier Sine & Cosine series, Parseval's	
	Identity Con	nplex form of Fourier series	
2	Fourier Tr	ansform Fourier Integral theorem. Fourier Sine and	04
	Cosine inter	grals Inversion formulae of Fourier transform	
3	Statistics: (Correlation, Karl Pearson coefficient & Spearman's rank	04
	Correlation	coefficient, linear regression, lines of regression.	
4	Discrete R	andom Variables: Random variables, Probability distribution	04
	for discrete	random variables, Expected value and Variance, Binomial	
	Distribution	and Poisson Distribution	
5	Continuous	s Random Variables: Probability Density Function for	04
6	Continuous	random variable, Normal Distribution	04
0	significance	critical region Large and Small Samples. Test of significance	04
	for Large Sa	amples: Test for significance of the difference between sample	
	mean and p	opulation means. Test for significance of the difference	
	between the	means of two samples. Test for significance of the difference	
	between sar	nple S.D and population S.D, Test for significance of the	
	difference b	etween the S.D of two samples.	
7	T-Tost. St	udent's t-distribution and its properties. Test of	04
	significance	e of small samples. Test for significance of the difference	
	between sa	ample mean and population means, Test for significance of	

the difference between the means of two samples, Chi-square distribution and its properties.

Term Work

Term work shall comprise of

A total of 10 tutorials to be taken batch wise covering the entire syllabus.

Text Books

- 1. B S Grewal, "Higher Engineering Mathematics", Khanna Publications.
- 2. H.K.Das. "Advanced Engineering Mathematics", S.Chand Publication.
- 3. Murray Spiegel. "Probability and Statistics" Schaum's Outline Series.

Reference Books

- 1. B. V. Ramanna. "Higher Engineering Mathematics" Tata Mc-Graw Hill Publication.
- 2. N.P.Bali. "Text book of Engineering Mathematics", Laxmi Publications.
- 3. R. K. Jain and S.R.K. Iyenger. "Advanced Engineering Mathematics", Narosa Publication.

Sr. No.	Examination	Module
1	T-I	1, 2
2	T-II	3, 4
3	End Sem	1 to 7

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058

Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

Course	Course Name		
Code	Course Maine		
PC-BTE401	Power Generation, Transmission & Distribution		
Course pre- requisites	Basic Electrical Engineering, Electrical Network		
	Course Objectives		
The objective	es of this course are		
1. To make student understand basic structure and requirements of any electric power supply system.			
2. To impart knowledge about modelling of various power system components.			
3. To make student realize the need of earthing & safety techniques			
Course Outcomes			
At the end of 1. Explain 2. Model p	of the course, students will demonstrate the ability to structure of power system, load patterns and various generation, storage techniques. power system equipments and evaluate their performance under steady state.		

3. Understand and appreciate the need of earthing and neutral grounding for power system equipments.

4. Identify various components and structure of distribution system.

Course Content				
Module No.	Details	Hrs.		
1	 Basic structure of power system: Single Line diagram, Generation, transmission and distribution voltage levels, Power system scenario in India, concept of regional and National GRID. Review of AC systems: Complex power in single phase and three phase systems, power factor correction, Star and delta connections, phasor diagram for balanced and unbalanced load. Basic Economics of power system: Load curves, connected load, maximum demand, demand factor, Average load, load factor, diversity factor, Tariff, Introduction to demand side management. 	4		
2	 Energy Generation & Storage- overview and comparative study of conventional and renewable power generation, Environmental and economic impact. Battery storage, types of batteries, different battery materials, Mechanical storage (flywheel, pump storage, PHS &CAES), Electrostatic & electromagnetic storage, UPS. 	6		
3	Transmission Systems: Transmission line resistance and shunt conductance, skin effect, proximity Effect, Electrical and Magnetic Fields around conductors, Corona Effect, Inductance and capacitance calculations for different configurations of single phase and three phase line with composite & bundled conductors. Cables and wires: theory, design and construction, cable laying methods, concept of cable derating.	6		

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058

Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

4	Models and Performance of Transmission Line: Steady state representation of lines: short, medium and long line models and performance evaluation, voltage and current waves, surge impedance loading (SIL), concept of lossless line, voltage, current profiles under different loading conditions, Ferranti Effect, shunt and series compensation.	8
5	 Modelling of Transformer, Synchronous Machine & Loads: Steady state representation of power transformer: Three-phase connections and star delta phase-shifts. Single phase equivalent of three-phase transformers. Three-winding transformers, autotransformers, Synchronous Machine: equivalent circuit, operation when connected to infinite bus, power angle characteristics. Load models : constant power, constant current & constant impedance loads 	6
6	Earthing & Neutral Grounding in power system: Soil resistivity, earth resistance, Tolerable limit of body currents- tolerable step and touch voltage-actual step and touch voltage, Design of earthing grid- concrete encased electrodes and tower footing Resistance, Measurement of earth resistance, soil resistivity, Impulse behavior of Earthing. Overvoltage due to ungrounded neutral, methods of neutral grounding.	6
7	Electrical Distribution Systems Structure of Distribution System, Components of Distribution System Substation and Busbar Layouts, Feeder Configurations, Nature of Loads in a Distribution System, Distribution transformer loading, various Load Allocation techniques.	6

For Self-study: Mechanical Design of O/H Transmission systems:

Types of towers, conductor configuration, spacing and clearance, span lengths, sag & tension, Types of insulator, Voltage distribution over insulator string, methods to improve string efficiency.

Text Books:

- 1. Saadat Hadi, "Power System Analysis, "TMH Publication.
- 2. Kothari D. P Nagrath I. J., "Modern Power System Analysis", TMH Publications.
- 3. Wadhawa C. L., "Electrical Power Systems", New Age International.
- 4. B. R. Gupta, "Power system Analysis and Design", S. Chand Publications
- 5. A. A. Sallam and O. P. Malik, "Electric Distribution System", IEEE Press, Piscataway, NJ, 2011.

Reference Books:

- 1. Prabha Kundur, "Power System Stability and Control", TMH Publication.
- 2. Olle I. Elgerd, "Electric Energy Systems Theory: an Introduction", TMH Publication
- 3. IEEE 80 IEEE guide for safety in substation grounding
- 4. Dr. K. Rajamani, "Application Guide for Power Engineers Part 1 Earthing & Grounding of Electrical systems", Notion Press.
- 5. W. H. Kresting, "Distribution System Modeling and Analysis", CRC Press, New York, 2002.

Course Code	Course Name
PC-BTE402	Measurements and Instrumentation
Course pre-requisites	Basic Electrical Engineering, Electrical networks, Signals and systems

Course Objectives

The objectives of this course are

- 1. Understanding the basic principles of electrical and electronic measurement, including units of measurement and calibration procedures.
- 2. Familiarizing students with common types of measurement devices, such as multi-meter, oscilloscopes, signal generators, and frequency counters.
- 3. Developing skills in the use of measurement equipment, including measurement setup, measurement execution, and data analysis.
- 4. Developing the ability to analyze and interpret measurement data, and to draw meaningful conclusions from it.

Course Outcomes

- 1. Apply the basics of electrical and electronics for analog signal measurement.
- 2. Interpret measurement data and identify source of errors in measurement.
- 3. Apply the knowledge of digital techniques in measuring instruments.
- 4. Apply calibration techniques and standards of measurements to ensure accuracy of measurement instruments.

Course Content		
Module No.	Details	Hrs.
1	Basics of Measurements Analog measuring instruments, General features of indicating, recording and integrating type of instruments, Errors in measurements	04
2	 Measurement of electrical quantities Measurement of current, voltage and Energy, Measurement of power in balanced and unbalanced electrical systems. Measurement of electrical parameters Measurement of low, medium and high resistance, insulation resistance, earth resistance, Wheatstone bridge, Kelvin double bridge, Megger, AC bridges for measurement of inductance and capacitance. 	09
3	Instrument transformer Theory of Current and potential transformers, Definition, various types, importance and applications, ratings, Definition of ratio and phase angle errors, LEM sensors, CCVT	06

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058

Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

4	Instruments for generation and analysis of waveforms Oscillator: Wein bridge oscillator, Phase shift oscillator, Standard signal generator, Function generator, Wave analyzer, Harmonic distortion analyzer, Spectrum analyzer, Cathode ray oscilloscope: time, frequency and phase angle measurement using CRO.	07
5	Digital Instruments Analog to digital conversion, sampling theorem, Digital measurement technique, Digital frequency meter, Digital voltmeters (DVM). Digital Storage Oscilloscope, Errors in digital measurement, Data logger, Digital sensors e.g. Sensors in solar PV system,	06
6	Transducers& basic Instrumentation Measurement of temperature, vibration, velocity (speed), flow, level, Photoelectric, strain gauge, Characteristics and selection for given Application	05
7	Calibration of Instruments and Safety in instrumentation Need of Instrument Calibration, Preparation for calibration, Standard calibration procedure, Five point calibration procedure, Safety in instrumentation, Standards for measurement (IEC 62419)	05

Text Books:

1. Sawhney A.K. "A course in Electrical and electronics measurements and Instrumentation" by Dhanpat Rai and Sons, 17th edition 2007.

2. T.S. Rathore, "Digital measurement techniques" by Narosa Publishing house, 1996

Reference Books:

Kalsi H.S. "Electronic Instrumentation", 3rd edition, Tata McGraw Hill, 1997.
 Doeblin E.O., "Measurement system application and design", 4th edition, Tata McGraw Hill, 1990

Evaluation:

Sr No.	Name of the exam	Modules
1	T-I	1,2,3
2	T-II	3,4
3	End semester examination	1-7

Course Code		Course Name	
PC-BTE 403		Electrical Machines-I	
Course pre-requisites		Electromagnetic field theory, Electrical Networks	
	Course Objectives		
	1. Discuss	s the concepts of magnetic field, magnetic circuits, electromagnetic	c force and
	torque.	when sive an alwais of DC markings and the astronomy	
	2. Compr	Course Outcomes	
	1. Apply	the concepts of magnetic circuits in rotating machine and transformers.	
	2. Examin	ne the differences in operation of different dc machine configurations.	
	3. Analyz	e and evaluate the performance of different transformers	
Madula		Course Content	
No.		Details	Hrs.
	Magnetic f	fields and magnetic circuits: Review of magnetic circuits - MMF, flux,	4
	reluctance	, inductance; review of Ampere Law and Biot Savart Law;	
1	Visualizati	ion of magnetic fields produced by a bar magnet and a current	
	carrying co	oil through air and through a combination of iron and air; influence of	
	highly per	meable materials on the magnetic flux lines.	
2	Electroma	gnetic force and torque: B-H curve of magnetic materials; flux-	3
	linkage vs	current characteristic of magnetic circuits	1
	force as a l	nartial derivative of stored energy with respect to position of a moving	4
3	element: to	orque as a partial derivative of stored energy with respect to angular	
	position of	f a rotating element.	
4	DC machi	nes : EMF equation, Armature winding and commutation- Derivation	4
4	of torque e	equation, armature reaction	
	DC machi	ne - motoring and generation, Types of field excitations – separately	6
5	excited, sh	nunt and series. Open circuit characteristic of separately excited DC	
-	generator,	V-I characteristics and torque-speed characteristics of DC machines.	
Factors aff Transforme		recting machine performance.	11
6	transforme	ers. Equivalent circuit. Phasor diagram, O.C. and S.C. test: Efficiency	11
	and regula	tion, Transformer Vector Groups, Parallel operation of transformers	
	Excitation	phenomenon in transformers: Transformer harmonics, Oscillating	10
	neutral, Tra	insformer switching current transient, Autotransformers, Tap changing	
7	transformer High Free	's. wency Transformers (HFT): Basic Principle - construction -	
/	Application	of HFT.	
	Factors affe	ecting machine transformer performance.	
1			

For Self-study: Different types of HFT and their constructions and comparison

E resources: <u>http://www.digimat.in/nptel/courses/video/108102146/L01.html</u>

Text Books:

- 1. P.C.Sen, Principles of Electric Machines and Power Electronics Wiley India Pvt Ltd.
- 2. A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans 'Electric Machinery', McGraw Hill, sixth edition
- 3. P.S.Bimbra, 'Electrical Machinery', by Khanna Publisher
- 4. Nagrath I. J., Kothari D.P., 'Electric Machines', TMH Publication.

Reference Books:

- 1. P.S. Bimbra, 'Generalized theory of Electrical Machines', Khanna Publisher..
- 2. Ashfaq Husain,' Electric Machines', Dhanpat Rai and Sons, second edition, 2017

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058 Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

Course CodeCourse NamePC-BTE404Microprocessor and Microcontroller

Course pre-requisites

Digital Electronics

Course Objectives

The objectives of this course are

- 1. To understand the difference between of Microprocessors & Microcontrollers
- 2. To understand architecture and features of typical Microcontroller.
- 3. To learn interfacing of memory and I/O.

Course Outcomes

- 1. Explain The 8051 Architecture
- 2. Know various instructions, addressing modes and hence do assembly language programming.
- 3. Be able to do interfacing of peripherals with microcontroller.

Course Content		
Module No.	Details	Hrs.
1	Fundamentals of Microprocessors: Fundamentals of Microprocessor Architecture. 8- bit Microprocessor and Microcontroller architecture, Comparison of 8-bit, 16-bit and 32-bit microcontrollers. Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems. Overview of the 8051 family.	06
2	The 8051 Architecture Internal Block Diagram, CPU, ALU, address, data and control bus, Working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles	06
3	Instruction Set and Programming I Addressing modes: Introduction, Instruction syntax, Data addressing, Indirect addressing, Relative addressing, Indexed addressing, Bit inherent addressing, bit direct addressing. 8051 Instruction set,	06

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058 Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

4	Instruction Set and Programming II Instruction timings. Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and debugging tools.	06
5	Memory and I/O Interfacing Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices	08
6	External Communication Interface Synchronous and Asynchronous Communication. RS232, SPI, I2C.	05
7	Applications LED, LCD and keyboard interfacing. Stepper motor interfacing.	05

For Self-Study : Applications of 8051 DC Motor interfacing and sensor interfacing Introduction and interfacing to protocols like Blue-tooth and Zig-bee.

	Text Books
1.	Ramesh Gaonkar, "Microprocessor Architecture, Programming, and
	applications with 8085", Penram International Publication 6 th edition,
	2013.
2.	Muhammad Ali Mazidi, "The 8051 Microcontrollers and Embedded
	Systems using Assembly and C", Pearson 2 nd edition, .2007
	Reference Books
	Reference Books
1.	Reference Books Mano M., "Computer System and Architecture", Pearson, 3 rd edition, 2017.
1. 2.	Reference Books Mano M., "Computer System and Architecture", Pearson, 3 rd edition, 2017. William Stallings, "Computer Organization and Architecture", Pearson, 11 th edition, 2022
1. 2. 3.	Reference Books Mano M., "Computer System and Architecture", Pearson, 3 rd edition, 2017. William Stallings, " Computer Organization and Architecture", Pearson, 11 th edition, 2022 A K Ray, K M Bhurchandi, Advanced Microprocessors and Peripherals, TMH, 3 ^{rd h} edition, 2017
1. 2. 3. 4.	Reference Books Mano M., "Computer System and Architecture", Pearson, 3 rd edition, 2017. William Stallings, "Computer Organization and Architecture", Pearson, 11 th edition, 2022. A K Ray, K M Bhurchandi, Advanced Microprocessors and Peripherals, TMH, 3 ^{rd h} edition, 2017. Kenneth J. Ayala," The 8051 Microcontroller Architecture, Programming, and

Sr. No.	Examination	Module
1	T-I	1,2
2	T-II	3,4
3	End Sem	01-07

Course Code	Course Name
PC-BTE405	Signals and Systems

Course pre-requisites	Basic Electrical Engineering, Laplace Transform, Fourier Series
	Course Objectives

The objectives of this course are

- 1. To introduce the concepts of signals and systems.
- 2. To discuss different analysis tools (Fourier Series, Fourier Transform, Laplace Transform and Z Transform) and their properties.
- 3. To carry out analysis and synthesis of both continuous-time and discrete time systems both in time domain and transformed domain using different transforms and applied mathematics concepts

Course Outcomes

- 1. Characterize CT and DT signals and systems.
- 2. Analyze DT systems in Time domain and using Z-Transform.
- 3. Analyze CT signals using Fourier analysis tools, CTFS and CTFT.
- 4. Analyze CT system using Fourier and Laplace transform.

Course Content				
Mod No.	Details	Hrs.		
1	Introduction to Signals and Systems Definition of basic signals such as impulse, unit step, unit ramp, Analog to digital conversion of signal, basic discrete time signals. Classification of signals, Signal operations, Signal RMS and average value. Concept of a Continuous time (CT) and Discrete time(DT) system, properties and classification of systems, Examples of CT and DT system models, modeling of electrical circuit models such as RL circuit.	06		
2	Discrete time LTI Systems Introduction FIR and IIR Systems, Discrete convolution and correlation, properties of convolution, Solution of linear constant coefficient difference equation, Zero input and zero state response.	06		
3	Fourier Series and Fourier Transform Introduction, Trigonometric and exponential Fourier Series, Parseval's theorem for Fourier Series, Power Spectrum of a Periodic Function. Fourier Transform, Properties of Fourier Transform such as Linearity, Symmetry, Scaling, Convolution, Time shifting, Frequency shifting, Fourier transform of some important signals such as rectangular, triangular, exponential, Gaussian pulse, energy spectrum. System analysis of CT system, frequency response of a CT system, Introduction to DTFS and DTFT.	06		

Sardar Patel College of Engineering, Andheri (West), Mumbai 400058 Course Contents for Semesters III & IV (BTech Electrical), (Under Regulations 2023)

4	Laplace Transform & its applications to System Analysis Introduction, Definition, ROC, Laplace Transform of basic signals, Laplace transform of periodic signals, Initial and Final value theorem, Partial fraction expansions, application to system analysis, transfer function, poles and zeros, stability in s-domain.	06
5	Z-Transform Introduction, Definition, one sided and two sided z-transform, ROC, Properties of ROC, Properties of z-transform. Inverse z- Transform using methods such as long division, partial fraction expansion and residue method.	06
6	Analysis of LTI systems using z-Transform Solution of linear constant coefficient difference equation using method of z-Transform, transfer function, impulse response and step response, Pole - zero concepts, stability criterion for systems, Relation between s- plane and z-plane.	06
7	Realization of Linear Systems Basic realization block diagram of CT and DT system. Basic structures of FIR Systems Basic structures for IIR Systems: Direct form – I, direct form – II, series, parallel.	06

Self Study- Applications of signals and systems in real life.

	Text Books	
1.	Alan V. Oppenheim, Alan V. Willsky and S.Hamid Nawab, "Signals and Systems",	
	Prentice-Hall India.	
2.	Mrinal Mandal and Amir Asif, "Continous and Discrete Time Signals and Systems",	
	Cambrige International Student Edition, Tata McGraw-Hill.	
3.	Haykin S and Van Veen B., "Signal & Systems", Wiley Publication, 2nd Ed., 2002.	
4.	Hwei P. Hsu, SCHAUM'S OUTLINES OF "Theory and Problems of Signals and	
	Systems", McGraw-Hill International.	
Reference Books		
1.	Nagrath I. J., Sharan S. N. and Ranjan R., "Signal & Systems", 2nd Ed., 2010.	
2.	Narayan Iyer, "Signal & Systems", Cengage Learning, 2011.	
3.	Lindner D.K., "Introduction to Signal & Systems", McGraw-Hill International Edition,	
	1999.	
4.	Ambardar, "Analog & Digital Signal Processing", Thomson learning, 2nd Ed.	
5.	Proakis J.G. and Manolakis D. G., "Digital Signal Processing: Principles, Algorithms and	
	applications", PHI publications (1995).	
6.	Lathi B.P., "Signal & Systems", Oxford University Press, second edition, 1998.	
•		

Sr. No.	Examination	Module
1	T-I	1,2,3
2	T-II	3, 4
3	End Sem	1-7

Cours	Course Code Course Name				
PC-B	PC-BTE452 Measurement and Instrumentation Laboratory				
Course and requisites Electronic Circuits and Digital Electronics					
Course pr	c-requisites	Electionic Circuits and Digital Electionics			
		Course Objectives			
The object	ives of this co	ourse are periment on calibration of energy meter			
2. T	o understand	different in-built Lab view result functions related to sign	als and		
S	system.				
3. T	o validate the	theoretical concept			
Upon succ	essful comple	tion of the course, students should be able to			
1. U	nderstand con	struction and working principle of various analog instrum	nents.		
2. U	nderstand var	ious measurement techniques used for measurement of va	rious		
pa	rameters.				
3. A	pply theoretic	al knowledge to convert analog signal into digital signal.			
Module					
No.		Details	Hrs.		
1	To measure	the energy consumed by load using analog energy	02		
1	meter and compare the measurement with static energy meter. Wattmeter.				
2	Study of Mo	oving iron, PMMC and Dynamometer type instruments	02		
	(Basic movi	ng systems).	02		
3	insulation re	e working of Megger and carry out measurement of existance.	02		
	Study of construction of LVDT and measurement of displacement,02				
4	force and pr	essure by using it.			
5	Measuremen	nt of R, L and C Using Different Bridges and n with analytical calculations	02		
6	Comparative	e study of temperature measurement using RTD and	02		
0	thermocoup	le.			
7	To measure	input voltage signal using Voltage to Frequency	02		
8	Study of Ca	thode Ray Oscilloscope	02		
9	Speed meas	urement using photoelectric pick up, magnetic pick up	02		
7	and stroboscope.				
10	Measuremen	nt of power in three phase balanced and unbalanced	2		
	analyzer.	onventional two watchieter method and by power			

Text Books

- 1. Sawhney. A.K., "A course in Electrical and electronics measurements and Instrumentation" by Dhanpat Rai and Sons 17th edition 2007.
- 2. T.S. Rathore, "Digital measurement techniques", by Narosa Publishing house

Reference Books

1. Kalsi H.S. "Electronic Instrumentation", Tata McGraw Hill, 3rd edition 1997.

2. Doeblin E.O, "Measurement system application and design", Tata McGraw Hill, 4^{th} edition 1990

Course Code		Course Name	
PC-BTE 453		Electrical Machines-I Lab	
Course pre-requisites Basics of Electrical Engineering			
Course Objectives			
	1. U	Inderstand concepts of electromagnetics through simulations	
	2. D	Demonstrate construction of different machines.	
	3. C	conduct experiment to evaluate performance of single phase and	three phase
		ansionner.	
		Course Outcomes	
	1 Va	rify concerts of electromegnetics using software simulation	
	1. Ver	the performance characteristics of DC machines	
	3. Eva	aluate the performance of transformer.	
	4. Obs	serve the effect of load variation on the performance of DC motor and	
	trar	nsformer	
	T	Course Content	
Expt. No.		Details	Hrs.
1.	Simulation I	based on Magnetic fields and magnetic circuits	2
2.	Simulation 2	based on Electromagnetic force and torque	2
3.	Demonstratio	on on construction of transformer and DC machines	2
4.	To study spe	ed control of DC Shunt Motor	2
5.	To perform l	oad test on DC Shunt Motor.	2
6.	To study spe	ed control of DC Series Motor	2
7.	To perform of	open circuit and short circuit test on 1 Phase Transformer	2
8.	To perform load test on 1 Phase Transformer2		
9.	To perform open circuit and short circuit test on 3 Phase Transformer2		
10.	To study parallel operation of two single phase transformer.2		
11.	To connect two winding transformer as a autotransformer2		
12.	General ma	chine model for developing different kind of machines	2

Reference Books:

- 1. P.C.Sen, Principles of Electric Machines and Power Electronics Wiley India Pvt Ltd.
- 2. A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans 'Electric Machinery', McGraw Hill, sixth edition
- 3. P.S.Bimbra, 'Electrical Machinery', by Khanna Publisher
- 4. NagrathI.J., Kothari D.P., 'Electric Machines', TMH Publication.
- 5. P.S.Bimbra, 'Generalized theory of Electrical Machines', Khanna Publisher.

Course Code		Course Name		
PC-BTE454		Microprocessor and Microcontroller Laboratory		
Course pro	e-requisites	Digital Electronics		
	Course Objectives			
The objecti	ves of this co	burse are		
1.	1. Study of instruction set and architecture of microprocessor and Microcontroller.			
2.	Study of ex	ternal interface.		
3.	Learn to de	velop applications using microprocessor/ microcontroller.		
		Course Outcomes		
Upon succe	essful comple	etion of the course, students should be able to		
1.	Apply instr	uction set of microprocessor and Microcontroller.		
2.	Interface w	ith external devices.		
3.	Write and p	present project report in a team.		
Modula		Course Content		
No.		Details	Hrs.	
	Micropro	cessor		
1	Addition of	of Two 8-bit Numbers and Sum is 8-bit.		
2	Addition of	of two 8 bit numbers and sum is 16-bit.	02	
3	Addition of	of Two 16-Bit Numbers and Sum is 16-bit.		
4	Decimal A	Decimal Addition of Two 8-Bit Numbers and Sum is 8-bit. 02		
5	One's Cor	mplement and Two's Complement of an 8-bit Number		
	Microcor	ntroller		
6	To add and	d subtract two 8 bit numbers using registers.	02	
7	To multip	ly and divide two 8 bit numbers using register.		
8	Addition a	and subtraction of two numbers using DPTR.	02	
9	Multiply a	nd divide two numbers using DPTR.		
10	Count nun	nber of ones in a 8 bit number, maximum and minimum	02	
	of number	S		
11	Ascending	g/Descending order.	02	
12	To perform	n read and write operation by 8255 interfacing	02	
13	Interfacing	g of microcontroller to seven segment display.	02	
14	Interfacing of microcontroller to D/A converters.		02	
		Text Books		

- 1. Ramesh Gaonkar, "Microprocessor Architecture, Programming, and applications with 8085", Penram International Publication 6th edition, 2013.
- 2. Muhammad Ali Mazidi, "The 8051 Microcontrollers and Embedded Systems using Assembly and C", Pearson 2nd edition, .2007